首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Polymerization and polymer properties of 1-phenyl-2-[4-(triphenylsilyl)phenyl]acetylene (pPh3SiDPA) and 1-phenyl-2-[4-(triisopropylsilyl)phenyl]acetylene (piPr3SiDPA), which have very bulky silyl groups, were examined. These monomers polymerized in good yields in the presence of TaCl5-based catalysts. The highest weight-average molecular weights of poly(pPh3SiDPA) and poly(piPr3SiDPA) reached about 1 × 106 and 4.8 × 106, respectively. The polymers were yellow to orange-colored solids which were soluble in toluene, chloroform, etc., and provided free-standing films by solution casting. The onset temperatures of weight loss of poly(pPh3SiDPA) and poly(piPr3SiDPA) in TGA in air were 430 and 270°C, respectively. The oxygen permeability coefficients of poly(pPh3SiDPA) and poly(piPr3SiDPA) at 25°C were 3.8 and 20 barrers, respectively, and relatively small. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2721–2725, 1998  相似文献   

2.
The 3‐ and 4‐aminophenylacetylenes protected by t‐butoxycarbonyl (t‐Boc) and 9‐fluorenylmethoxycarbonyl (Fmoc) groups ( 3a – 6a ) were synthesized and polymerized using [(nbd)RhCl]2 ( 1 ) and [(nbd)Rh+‐η6‐PhB?Ph3] ( 2 ) catalysts. The t‐Boc‐containing polymers [poly( 3a ) and poly( 4a )] were obtained in high yield (82–91%). Among the Fmoc‐protected monomers, the para‐derivative polymerized well [poly( 6a ); yield = 85–94%], whereas its meta‐substituted analogue did not afford high molecular weight polymer in good yield [poly( 5a ); yield = 10–15%]. The use of KN(SiMe3)2 as a cocatalyst in conjunction with 1 led to a dramatic increase in the molecular weight of the polymers. The acid‐ and base‐catalyzed removal of the t‐Boc and the Fmoc groups, respectively, generated primary amine‐containing polymers [poly( 3b )–poly( 6b )] which cannot be obtained directly by the polymerization of the corresponding monomers. The solubility characteristics of the polymers bearing protected amino groups were quite different from those of the unprotected ones, the former being soluble in polar solvents, whereas the latter displayed poor solubility even in polar protic or highly polar aprotic solvents. The attempts to accomplish the free‐standing membrane fabrication by solution casting were successful only for poly( 3a ), and an augmentation in the gas permeability and CO2/N2 permselectivity was discerned in comparison with the unsubstituted poly(phenylacetylene) and poly(mt‐butyldimethylsiloxyphenylacetylene). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1853–1863, 2009  相似文献   

3.
Five novel fluorene‐containing polymers, poly[(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA1 ), poly[(1‐pentyl‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene) ( PFA2 ), poly[1‐decyl‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA3 ), poly[1‐phenyl‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA4 ), and poly[1‐(3,4‐difluorophenyl)‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA5 ) were synthesized by the polymerization of the corresponding fluorene‐substituted acetylenic monomers ( M1–M5), using WCl6, MoCl5, and TaCl5 as catalysts and n‐Bu4Sn as a cocatalyst. The synthesized polymers were thermally stable and readily soluble in common organic solvents. The degradation temperatures for a 5% weight loss of the polymers were ∼352–503 °C under nitrogen. PFA1–PFA5 show emission peaks from 402 to 590 nm. Besides, their electroluminescent properties were studied in heterostructure light‐emitting diodes (LEDs), using PFA2–PFA5 as an emitting layer. The PFA5 device revealed an orange‐red emission peak at 602 nm with a maximum luminescence of 923 cd/m2 at 8 V. A device with the ITO/PEDOT/ a mixture of PFA2 (98 wt %) and PFA5 (2 wt %)/Ca/Al showed near white emission. Its maximum luminance and current efficiency are 450 cd/m2 at 15 V and 1.3 cd/A, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 519–531, 2006  相似文献   

4.
Acetylenes containing salicylideneaniline groups—N‐salicylidene‐3‐ethynylaniline ( 1 ), N‐(3‐t‐butylsalicylidene)‐3‐ethynylaniline ( 2 ), and N‐(3‐t‐butylsalicylidene)‐4‐ethynylaniline ( 3 )—polymerized smoothly and gave yellow to red polymers in excellent yields when a rhodium catalyst was employed. Polymers with alkyl substituents on the aromatic rings [poly( 2 ) and poly( 3 )] were soluble in CHCl3, tetrahydrofuran, and so forth, whereas the polymer without alkyl substituents [poly( 1 )] was insoluble in any solvent. N‐(3‐t‐Butylsalicylidene)propargylamine did not provide any polymer. Thermogravimetric analyses of the resultant polymers exhibited good thermal stability (To, onset temperature of weight loss > 300 °C). The ultraviolet–visible spectra of the polymers showed absorption maxima and cutoff wavelengths around 360 and 520 nm, respectively. The polymers exhibited largely Stokes‐shifted fluorescence (emission wavelength ? 550 nm) upon photoexcitation at 350 nm, which resulted from the photoinduced intramolecular proton transfer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2458–2463, 2002  相似文献   

5.
Sodium salts of water‐soluble polymers poly{[2,5‐bis(3‐sulfonatopropoxy)‐1,4‐phenylene]‐alt‐[2,5‐bis(hexyloxy)‐1,4‐phenylene]} ( P1 ), poly{[2,5‐bis(3‐sulfonatopropoxy)‐1,4‐phenylene]‐alt‐[2,5‐bis(dodecyloxy)‐1,4‐phenylene]} ( P2 ), poly{[2,5‐bis(3‐sulfonatopropoxy)‐1,4‐phenylene]‐alt‐[2,5‐bis(dibenzyloxy)‐1,4‐phenylene]} ( P3 ), poly[2‐hexyloxy‐5‐(3‐sulfonatopropoxy)‐1,4‐phenylene] ( P4 ), and poly[2‐dodecyloxy‐5‐(3‐sulfonatopropoxy)‐1,4‐phenylene] ( P5 )] were synthesized with Suzuki coupling reactions and fully characterized. The first group of polymers ( P1 – P3 ) with symmetric structures gave lower absorption maxima [maximum absorption wavelength (λmax) = 296–305 nm] and emission maxima [maximum emission wavelength (λem) = 361–398 nm] than asymmetric polymers P4 (λmax = 329 nm, λem = 399 nm) and P5 (λmax = 335 nm, λem = 401 nm). The aggregation properties of polymers P1 – P5 in different solvent mixtures were investigated, and their influence on the optical properties was examined in detail. Dynamic light scattering studies of the aggregation behavior of polymer P1 in solvents indicated the presence of aggregated species of various sizes ranging from 80 to 800 nm. The presence of alkoxy groups and 3‐sulfonatopropoxy groups on adjacent phenylene rings along the polymer backbone of the first set hindered the optimization of nonpolar interactions. The alkyl chain crystallization on one side of the polymer chain and the polar interactions on the other side allowed the polymers ( P4 and P5 ) to form a lamellar structure in the polymer lattice. Significant quenching of the polymer fluorescence upon the addition of positively charged viologen derivatives or cytochrome‐C was also observed. The quenching effect on the polymer fluorescence confirmed that the newly synthesized polymers could be used in the fabrication of biological and chemical sensors. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3763–3777, 2006  相似文献   

6.
Mesogen jacketed liquid crystalline poly(1‐alkyne) and poly(1‐phenyl‐1‐alkyne) linked pendants of terphenyl mesogens with hexyloxy tails at the waist position (? {RC?C? [(CH2)3OOC‐terpheyl‐(OC6H13)2]}n? , where R?H, PHATP(OC6)2 ; R?C6H5, PPATP(OC6)2 ) were synthesized. The influences of structural variations on the thermal, mesomorphic, and luminescent properties were investigated. Polymerizations of all monomers are carried out by WCl6‐Ph4Sn catalysts successfully. The polymers are stable (Td ≥ 340 °C) and soluble in common solvents. The monomers and polymers show enantiotropic SmA phases in the heating and cooling processes, and the lateral side chains of the mesogenic units are perpendicular to the main chain. The “jacket effect” of chromophoric terphenyl core “shell” around the main chain also contributes to polymers with high photoluminescence, and the pendant‐to‐backbone energy transfer path is involved in the luminescence process of this polymers. In comparison with monosubstituted polyacetylene PHATP(OC6)2 , the disubstituted polyacetylene PPATP(OC6)2 shows better photoluminescence in both THF solution and film, and exhibited about 40 nm red‐shifted than PHATP(OC6)2 , indicating that the “jacket effect” of terphenyl mesogens forces poly(1‐phenyl‐1‐alkyne) backbone to extend in a more planar conformation with a better conjugation. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
New aromatic diyne monomers of 1,4‐diethynyl‐2,5‐(dihexyloxy)benzene ( 1 ), 1,6‐diethynyl‐2‐(hexyloxy)naphthalene ( 2 ), and 9,9‐bis(4‐ethynylphenyl)fluorene ( 3 ) are synthesized. Their homopolymerizations and copolymerizations with 1‐octyne ( 4 ) or phenylacetylene ( 5 ) are effected by TaBr5–Ph4Sn and CpCo(CO)2, giving soluble hyperbranched polyarylenes with high molecular weights (Mw up to ~ 2.9 × 105) in high yields (up to 99%). The structures and properties of the polymers are characterized and evaluated by IR, NMR, UV, PL, and TGA analysis. The polymers show excellent thermal stability (Td > 400 °C) and carbonize when pyrolyzed at 900 °C. Upon photoexcitation, the polymers emit deep blue light in the vicinity of ~400 nm with fluorescence quantum yields up to 92%. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4249–4263, 2007  相似文献   

8.
With Ph2CHK as an initiator, the anionic polymerization of N‐propyl‐N‐(3‐triisopropoxysilylpropyl)acrylamide ( 4 ) and N‐propyl‐N‐(3‐triethoxysilylpropyl)acryl‐amide generated polymers with predicted molecular weights and narrow molecular weight distributions (MWDs) in the presence of Et2Zn or Et3B; however, the resulting polymers obtained in the absence of such Lewis acids had very broad MWDs. The results were ascribed to the coordination of the propagating anionic end to a relatively weak Lewis acid, in which the activity of the end anion was appropriately controlled for moderate polymerization without side reactions. A well‐defined diblock copolymer of 4 and N,N‐diethylacrylamide was also prepared with the binary initiating system of Ph2CHK and Et2Zn, whereas no such block copolymer was prepared by polymerization initiated with 1,1‐diphenyl‐3‐methylpentyllithium, as the propagating anion together with the lithium ion reacted with alkoxysilyl side groups on the poly( 4 ) backbone to produce grafted polymers with high molecular weights. The hydrolysis of the alkoxysilyl side groups of poly( 4 ) in acidic water yielded an insoluble gel. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2754‐2764, 2005  相似文献   

9.
The Sonogashira–Hagihara coupling polymerization of d ‐hydroxyphenylglycine‐derived diiodo monomers 1–4 and platinum‐containing diethynyl monomer 5 gave the corresponding polymers [poly( 1–5 )–( 2–5 )] with number‐average molecular weights of 19,000–25,000 quantitatively. The polymers were soluble in CHCl3, CH2Cl2, THF, and DMF. CD and UV–vis spectroscopic analysis revealed that amide‐substituted polymers [poly( 1–5 ) and poly( 2–5 )] formed chiral higher‐order structures in solution, while ester‐substituted polymers [poly( 3–5 ) and poly( 4–5 )] did not. Poly( 1–5 ) formed one‐handed helices in THF/toluene mixtures, while it formed chiral aggregates in THF/MeOH mixtures. Poly( 1–5 ) emitted fluorescence with quantum yields ranging from 0.8 to 1.3%. The polymers usually aggregated in the solid state. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2452–2461  相似文献   

10.
The monomer and excimer fluorescence quantum yields of well‐defined poly(dimethylsiloxane‐co‐diphenylsiloxane)s with different diphenylsiloxane (Ph2SiO) contents have been determined, along with those of 1,1,3,3‐tetraphenyl‐1,3‐dimethyldisiloxane and 1,1,3,3,5,5‐hexaphenyltrisiloxane‐1,5‐diol used as model compounds, in a dilute organic solvent at different temperatures. The measured fluorescence quantum yields of the copolymers are correlated with the fraction of the ? (CH3)2SiO? (Ph2SiO)n? (CH3)2SiO? structures. The monomer fluorescence yield for copolymers with low Ph2SiO contents is dominated mainly by the isolated ? (CH3)2SiO? (Ph2SiO)? (CH3)2SiO? unit, and the apparent mean binding energy of the excimer does not increase significantly with increasing Ph2SiO content. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 854–861, 2002  相似文献   

11.
The polymerization of (−)‐p‐[(tert‐butylmethylphenyl)silyl]phenylacetylene (t‐BuMePhSi*PA) and (+)‐p‐[{methyl(α‐naphthyl)phenyl}silyl]phenylacetylene (MeNpPhSi*PA) with the [(nbd)RhCl]2 Et3N catalyst yielded polymers with very high molecular weights over 2 × 106 in high yields. The optical rotations of the formed poly(t‐BuMePhSi*PA) and poly(MeNpPhSi*PA) were as high as −356 and −150° (c = 0.11 g/dL in CHCl3), respectively. The circular dichroism (CD) spectrum of poly(t‐BuMePhSi*PA) in CHCl3 exhibited very large molar ellipticities ([θ]) in the UV region: [θ]max = 9.2 × 104 ° · cm2 · dmol−1 at 330 nm and −8.0 × 104 ° · cm2 · dmol−1 at 370 nm. The [θ]max values of poly(MeNpPhSi*PA) were also fairly large: [θ]max = 7.1 × 104 ° · cm2 · dmol−1 at 330 nm and −5.3 × 104 ° · cm2 · dmol−1 at 370 nm. The optical rotations of poly(t‐BuMePhSi*PA) and poly(MeNpPhSi*PA), measured in tetrahydrofuran, chloroform, and toluene solutions, were hardly dependent on temperature in the range 22–65 °C. The CD effects of these polymers hardly changed in the temperature range 28–80 °C, either. These results indicate that the helical structures of these polymers are thermally appreciably stable. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 71–77, 2001  相似文献   

12.
Polymerizations of 1‐naphthylacetylene (1‐NA) and 9‐anthrylacetylene (9‐AA) by various transition metal catalysts were studied, and properties of the polymers were clarified. 1‐NA polymerized with WCl6‐based catalysts to offer dark purple polymers in good yield. Especially, a binary catalyst composed of WCl6 and Ph3Bi gave a polymer with high molecular weight (Mw = 140×103) and sufficient solubility in common solvents. The use of Mo and Rh catalysts, in contrast, resulted in the formation of insoluble red poly(1‐NA)s. 9‐AA gave insoluble polymers by both WCl6‐ and MoCl5‐based catalysts in moderate to good yields. Copolymerization of 9‐AA with 1‐NA by WCl6–Ph3Bi provided a soluble copolymer which exhibited the largest third‐order nonlinear optical susceptibilities (χ(3)(−3ω; ω, ω, ω) = 40×10−12) among all the substituted polyacetylenes synthesized so far. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 277–282, 1999  相似文献   

13.
N-Carbazolylacetylene (CzA) was polymerized in the presence of various transition metal catalysts including WCl6, MoCl5, [Rh(NBD)Cl]2, and Fe(acac)3 to give polymers in good yields. The polymers produced with W catalysts were dark purple solids and soluble in organic solvents such as toluene, chloroform, etc. The highest weight-average molecular weight of poly(CzA) reached about 4 × 104. In the UV–visible spectrum in CHCl3, poly(CzA) exhibited an absorption maximum around 550 nm (εmax = 4.0 × 103 M−1 cm−1) and the cutoff wavelength was 740 nm, showing a large red shift compared with that of poly(phenylacetylene) [poly(PA)]. Poly(CzA) began to lose weight in TGA under air at 310°C, being thermally more stable than poly(PA) and poly[3-(N-carbazolyl)-1-propyne]. Poly(CzA) showed a third-order susceptibility of 18 × 10−12 esu, which was 2 orders larger than that of poly(PA). © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2489–2492, 1998  相似文献   

14.
An efficient introduction of vinyl group into poly (ethylene‐co‐styrene) or poly(ethylene‐co?1‐hexene) has been achieved by the incorporation of 3,3′‐divinylbiphenyl (DVBP) in terpolymerization of ethylene, styrene, or 1‐hexene with DVBP using aryloxo‐modified half‐titanocenes, Cp′TiCl2(O?2,6‐iPr2C6H3) [Cp′ = Cp*, tBuC5H4, 1,2,4‐Me3C5H2], in the presence of MAO cocatalyst, affording high‐molecular‐weight polymers with unimodal distributions. Efficient comonomer incorporations have been achieved by these catalysts, and the content of each comonomer could be varied by its initial concentration charged. The postpolymerization of styrene was initiated from the vinyl group remained in the side chain by treatment with n‐BuLi. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2581–2587  相似文献   

15.
Polymerization of p-(dimethylsilyl)phenylacetylene in toluene at 25 and 80 °C with RhI(PPh3)3 catalyst afforded highly regio- and stereoregular poly(dimethylsilylene-1,4-phenylenevinylene)s [cis- and trans-poly( 1a )s] containing 98% cis- and 99% trans-vinylene moieties, respectively. The trans-type polymers exhibited redshifts and hyperchromic effects in the ultraviolet–visible spectrum as compared with the cis-type counterparts. Photoirradiation of cis- and trans-poly( 1a )s gave cis-rich mixtures at equilibrium states. The trans and cis polymers exhibited different emission properties, for example—trans polymer, emissn λmax = 400 nm, quantum yield: 3.4 × 10−3 and cis polymer, emissn λmax = 380 nm, quantum yield: 1.5 × 10−3. Besides poly( 1a ), poly(dimethylsilylenearylenevinylene)s containing biphenylene and phenylenesilylenephenylene units [poly( 3 )] were prepared. The extent of conjugation in these polymers decreased in the orders of biphenylene > phenylene > phenylenesilylenephenylene as well as trans-vinylene > cis-vinylene. The quantum yield of the trans-rich polymer with biphenylene moiety was fairly large and 0.15. Polyaddition of 1,4-bis(dimethylsilyl)benzene and three types of diethynylarenes (4,4′-diethynylbiphenyl, 2,7-diethynylfluorene, and 2,6-diethynylnaphthalene) catalyzed by RhI(PPh3)3 provided novel regio- and stereoregular polymers [poly( 6 )]. These polymers displayed blue light emission with high quantum yields (4–81%). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3615–3624, 2003  相似文献   

16.
Novel polyacetylenes, poly( 1 ) and poly( 2 ) substituted with benzoxazine rings were synthesized by the polymerization of the corresponding acetylene monomers 1 and 2 using Rh catalysts, [(nbd)RhCl]2, and (nbd)Rh+BPh4 (nbd = 2,5‐norbornadiene). The polymers were heated at 250 °C under N2 to obtain the corresponding polybenzoxazine resins, poly( 1 )′ and poly( 2 )′ possessing polyacetylene main chains via the ring‐opening polymerization of the benzoxazine moieties. The polyacetylene backbones were maintained after crosslinking reaction at 250 °C, which were confirmed by Raman spectroscopy. The benzoxazine resins were thermally highly stable as evidenced by differential scanning calorimetry and thermogravimetric analysis. The surface of poly( 1 )′ film became hydrophilic compared to that of poly( 1 ), while the surfaces of poly( 2 ) and poly( 2 )′ films showed almost the same hydrophilicity judging from the water contact angle measurement. Poly( 1 )′ and poly( 2 )′ exhibited refractive indices smaller than those of poly( 1 ) and poly( 2 ). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1884–1893  相似文献   

17.
Copolymerizations of propylene (P) with 1,5‐hexadiene (1,5‐HD) were carried out with isospecific rac‐1,2‐ethylenebis(1‐indenyl)Zr(NMe2)2 [rac‐(EBI)Zr(NMe2)2, 1] and syndiospecific isopropylidene(cyclopentadienyl)(9‐fluorenyl)ZrMe2 [i‐Pr(Cp)(Flu)ZrMe2, 2] compounds combined with Al(i‐Bu)3/[Ph3C][B(C6F5)4] as a cocatalyst system. Microstructures of poly(propylene‐co‐1,5‐HD) were determined by 1H NMR, 13C NMR, Raman spectroscopies and X‐ray powder diffraction. The isospecific 1/Al(i‐Bu)3/[Ph3C][B(C6F6)4] catalyst showed much higher polymerization rate than 2/Al(i‐Bu)3/[Ph3C][B(C6F6)4] system, however, the latter system showed higher incorporation of 1,5‐HD (rP = 8.85, r1,5‐HD = 0.274) than the former system (rP = 16.25, r1,5‐HD = 0.34). The high value of rP × r1,5‐HD far above 1 demonstrated that the copolymers obtained by both catalysts are somewhat blocky. The insertion of 1,5‐HD proceeded by enantiomorphic site control; however, the diastereoselectivity of the intramolecular cyclization reaction of 1,2‐inserted 1,5‐HD was independent of the stereospecificity of metallocene compounds, but dependent on the concentration of 1,5‐HD in the feed. The insertion of the monomers by enantiomorphic site control could also be realized by Raman spectroscopy and X‐ray powder diffraction of the polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1590–1598, 2000  相似文献   

18.
Poly(1‐pentyne)s containing biphenyl and phthalimido pendant groups with different spacer lengths {P 1 (m); ? [HC?C(CH2)3O? Biph? OCO(CH2)mN(CO)2C6H4]n? , Biph?4,4′? biphenylyl; m = 7, 10} are synthesized in satisfactory yields by WCl6‐Ph4Sn catalyst in toluene at elevated temperatures. The structures and properties of the polymers are characterized and evaluated by IR, NMR, TGA, DSC, POM, and XRD analyses. Both of the polymers are thermally stable (Td ≥ 300 °C) and exhibit nematicity at high temperatures. Their phthalimido groups are converted into amino groups by hydrolysis, which can, after acidification, complex with lead(II) bromide to furnish polyacetylene–perovskite hybrids in high yields. The organic components contribute good solubility to the hybrids, while the perovskite framework induces the polyacetylene chains to align within the inorganic sheets. The hybrids emit a strong UV light of 374 nm upon photoexcitation, whose quantum yield increases with an increase in the spacer length. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3538–3550, 2006  相似文献   

19.
2‐Furyloxirane (FO), a monomer usually obtained from a nonpetroleum route, was prepared from the epoxidation reaction of furfural and trimethylsulfonium chloride. About 200–300 g FO can be obtained in each preparation process. Although anionic polymerization of FO generally gives low‐ molecular‐weight polymers even after long periods of polymerization, the reaction was greatly improved when macrocyclic ether was used as a cocatalyst to potassium tert‐butoxide. When 18‐crown‐6 was used as a cocatalyst, poly(2‐furyloxirane) (PFO) with a number‐average molecular weight (Mn) of 41.5 kg/mol and a polydispersity index of 1.3 was obtained at 94% yield after polymerization at 40 °C for 72 h. The PFO obtained contained a 61.7% head‐to‐tail (H‐T) structure in the absence of the macrocyclic ether, and it reached 70.6% when cryptand[2,2,2] was used as a cocatalyst. PFO with higher regioregular structures showed improved thermal properties. For PFO with Mn of around 20.0 kg/mol, its glass transition temperature (Tg) increased from ?3 to 6 °C when the H‐T content was increased from 61.7 to 70.6%. Raising the Mn of PFO also raised Tg. For PFO with 68.9% H‐T structure, its Tg could reach 7 °C when Mn was increased to 40 kg/mol. This study shows two effective ways to improve the thermal and mechanical performances of the polymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
Aryloxo‐modified half‐titanocenes, Cp′TiCl2(O‐2,6‐iPr2C6H3) [Cp′ = Cp* ( 1 ), tBuC5H4 ( 2 )], catalyze terpolymerization of ethylene and styrene with α‐olefin (1‐hexene and 1‐decene) efficiently in the presence of cocatalyst, affording high‐molecular‐weight polymers with unimodal distributions (compositions). Efficient comonomer incorporations have been achieved by these catalysts. The content of each comonomer (α‐olefin, styrene, etc.) could be controlled by varying the comonomer concentration charged, and resonances ascribed to styrene and α‐olefin repeated insertion were negligible. The terpolymerization with p‐methylstyrene (p‐MS) in place of styrene also proceeded in the presence of [PhN(H)Me2][B(C6F5)4] and AliBu3 cocatalyst, and p‐MS was incorporated in an efficient matter, affording high‐molecular‐weight polymers with uniform molecular weight distributions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2565–2574  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号