首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We measured the ionic conductivity of amorphous poly[oligo (oxyethylene glycol) methacrylate] (PMEO)–lithium salt complexes under a CO2 pressure varying from 0.1 to 20 MPa. The pressure dependence of the conductivity was positive, and the conductivity was higher than that under an inert gas such as N2. The ion‐conductive behavior has been modeled using both the Vogel–Tammann–Fulcher (VTF) equation and activation volume theory. The calculated parameters of the VTF equation show that CO2 that had permeated into the PMEO matrix acts as solvent molecules to dissolve ions and lower the glass transition temperature at high pressures. The ionic conduction in PMEO complexes under high‐pressure CO2 was scarcely related to the VTF parameters and activation volume equations. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3151–3158, 2005  相似文献   

2.
The ionic mobility and conductivity in the crystalline phases of PbSnF4–xCaF2 systems (x = 2.5 mol.%, 5 mol.%, 7.5 mol.%, and 10 mol.%) in the temperature range of 150-500 K are studied by NMR and impedance spectroscopy. The parameters of 19F NMR spectra, types of ion motions, and ionic conductivity in the PbSnF4 compound doped with calcium fluoride are found to be determined by the temperature and concentration of calcium fluoride. The specific conductivity of the crystalline phases in the PbSnF4–CaF2 systems is rather high at room temperature, and hence, one cannot exclude the possibility to use them for the creation of functional materials with a high ionic (superionic) conductivity.  相似文献   

3.
A new method for the synthesis of hyperbranched polymers involving the use of ABx macromonomers containing linear units have been investigated. Two types of novel hyperbranched polyurethanes have been synthesized by a one‐pot approach. The structures of monomers and polymers were characterized by elemental analysis, 1H NMR, 13C NMR, Fourier transform infrared spectroscopy, gel permeation chromatography, and thermogravimetric analysis. The hyperbranched polymers have been proven to be extremely soluble in a wide range of solvents. Polymer electrolytes were prepared with hyperbranched polymer, linear polymer as the host, and lithium perchlorate (LiClO4) as the ion source. Analysis of the isotherm conductivity dependence of the ion concentration indicated that these hyperbranched polymers could function as a “solvent” for the lithium salt. The conductivity increased with the increasing concentration of hyperbranched polymers in the host polymer. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 344–350, 2002  相似文献   

4.
5-Vinyltetrazole (VT)-based polymer is mainly produced by ‘click chemistry’ from polyacrylonitrile due to the unavailability of 5-vinyltetrazole monomer, which usually produces copolymers of VT and acrylonitrile rather than pure poly(5-vinyltetrazole) (PVT). In present work, VT was synthesized from 5-(2-chloroethyl)tetrazole via dehydrochlorination. A series of PVT with different molecular weight were synthesized by normal free radical polymerization. The chemical structures of VT and PVT were characterized by 1H NMR and FTIR. PVT without any doped acid exhibits certain proton conductivity at higher temperature and anhydrous state. The proton conductivity of PVT decreases at least 2 orders of magnitude after methylation of tetrazole. PVT and PVT/H3PO4 composite membranes are thermally stable up to 200 °C. The glass transition temperature (Tg) of PVT/xH3PO4 composite membranes is shifted from 90 °C for x = 0.5 to 55 °C for x = 1. The temperature dependence of DC conductivity for pure PVT exhibits a simple Arrhenius behavior in the temperature range of 90–160 °C, while PVT/xH3PO4 composite membranes with higher H3PO4 concentration can be fitted by Vogel–Tamman–Fulcher (VTF) equation. PVT/1.0H3PO4 exhibits an anhydrous proton conductivity of 3.05 × 10−3 at 110 °C. The transmission of the PVT/xH3PO4 composite membrane is above 85% in the wavelength of visible light and changes little with acid contents. Thus, PVT/xH3PO4 composite membranes have potential applications not only in intermediate temperature fuel cells but also in solid electrochromic device.  相似文献   

5.
Two series of novel crosslinked siloxane‐based polymers and their complexes with lithium perchlorate (LiClO4) were prepared and characterized by Fourier transform infrared spectroscopy, solid‐state NMR (13C, 29Si, and 7Li nuclei), and differential scanning calorimetry. Their thermal stability and ionic conductivity of these complexes were also investigated by thermogravimetric and AC impedance measurements. In these polymer networks, poly(propylene oxide) chains with different molecular weights were introduced through self‐synthesized epoxy‐siloxane precursors cured with two curing agents. The glass‐transition temperature (Tg) of these copolymers is dependent on the length of the ether units. The dissolution of LiClO4 considerably increases the Tg of the polyether segments. The dependence of the ionic conductivity was investigated as a function of temperature, LiClO4 concentration, and the molecular weight of the polyether segments. The ion‐transport behavior was affected by the combination of the ionic mobility and number of carrier ions. The 7Li solid‐state NMR line shapes of these polymer complexes suggest a significant interaction between Li+ ions and the polymer matrix, and temperature‐ and LiClO4 concentration‐dependent chemical shifts are correlated with ionic conductivity. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1226–1235, 2002  相似文献   

6.
Positron lifetime spectroscopy has been applied to study the temperature dependence of free-volume properties in a solvent-free polymer–salt complex polyethylene oxide (PEO) doped with ammonium iodide (NH4I, with NH ≈ 0.076) in the temperature range of 298–353 K. The observed lifetime spectra were resolved into three components and the longest lifetime, τ3, was associated with the pick-off annihilation of ortho-positronium (o-Ps) trapped by the free volume. The lifetime component, τ3, and its intensity, I3, both showed a significant variation with temperature, which followed a different course in the heating and cooling cycle. Changes in the temperature coefficient of τ3 and I3 were observed at T ≈ 328 K, the melting point of the sample. This behaviour is correlated to the temperature variation of the electrical conductivity. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 969–976, 1998  相似文献   

7.
[Perfluoro-organic]/[silicon oxide] hybrids were formed by conducting sol-gel reactions of tetraethylorthosilicate within a perfluoro(carboxylate/sulfonate) bilayer membrane in the Co+2 form. FTIR and 29Si solid-state NMR spectroscopies were used to probe general aspects of molecular structure within the silicon oxide phase as a function of its relative content. The internal gel structure is considerably unconnected in terms of the population of Si O Si groups in cyclic vs. linear substructures and degree of Si atom coordination about bonded SiO4 units. In situ (HO)xSiO2[1-1/4x] intrastructure become increasingly less connected and more strained with regard to bonding geometry with increasing percent silicon oxide. Structural differences are seen between the silicon oxide component incorporated in carboxylate and sulfonate layers. These inorganically modified perfluorinated ionomers have potential as fast-proton conducting membranes for fuel cells and as permselective membranes in liquid pervaporation cells. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 595–606, 1998  相似文献   

8.
The chemically covalent polyethylenimine–siloxane hybrids doped with various amounts of ortho‐phosphoric acid (H3PO4) were prepared and characterized by FTIR, DSC, TGA, and solid‐state NMR spectra. The protonic conduction behavior of these materials was also investigated by means of impedance measurements. These observations indicate that the hydrogen bonding and protonic interactions exist between the dopant H3PO4 and the hybrid host, resulting in an increase in T g of polyethylenimine segments. These hybrids are thermally stable up to 200 °C from TGA analysis. Conductivity studies show an Arrhenius behavior characteristic and the Grotthus‐like proton conduction, and a high conductivity of 10?2–10?3 S cm?1 at 110 °C in dry atmosphere for the hybrid membrane with H3PO4/EI of 0.5. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2135–2144, 2006  相似文献   

9.
In this work, poly(4‐vinylbenzylboronic acid‐co‐4(5)‐vinylimidazole) (poly(4‐VBBA‐co‐4‐Vim)) copolymers were synthesized by free‐radical copolymerization of the monomers 4‐VBBA and 4‐Vim at various monomer feed ratios. The copolymers were characterized by 1H MAS NMR and 11B MQ‐MAS NMR methods and the copolymer composition was determined via elemental analysis. The membrane properties of these copolymers were investigated after doping with phosphoric acid at several stoichiometric ratios. The proton exchange reaction between acid and heterocycle is confirmed by FTIR. Thermal properties of the samples were investigated via thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC). The morphology of the copolymers was characterized by x‐ray diffraction, XRD. The temperature dependence of proton conductivities of the samples was investigated by means of impedance spectroscopy. Proton conductivity of the copolymers increased with the doping ratio and reached to 0.0027 S/cm for poly(4‐VBBA‐co‐4‐Vim)/2H3PO4 in the anhydrous state. The boron coordination in the copolymer was determined by 11B MQ‐MAS experiment and the coexistence of three and four coordinated boron sites was observed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1267–1274, 2009  相似文献   

10.
The phase structure of a series of ethylene‐vinyl acetate copolymers has been investigated by solid‐state wide‐line 1H NMR and solid‐state high‐resolution 13C NMR spectroscopy. Not only the degree of crystallinity but the relative contents of the monoclinic and orthorhombic crystals within the crystalline region varied with the vinyl acetate (VA) content. Biexponential 13C NMR spin–lattice relaxation behavior was observed for the crystalline region of all samples. The component with longer 13C NMR spin–lattice relaxation time (T1) was attributed to the internal part of the crystalline region, whereas the component with shorter 13C NMR T1 to the mobile crystalline component was located between the noncrystalline region and the internal part of the crystalline region. The content of the mobile crystalline component relative to the internal part of the crystalline region increased with the VA content, showing that the 13C NMR spin–lattice relaxation behavior is closely related to the crystalline structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2199–2207, 2002  相似文献   

11.
Polyurea, which was synthesized from 4,4′‐diphenylmethane diisocyanate, Jeffamine‐ED2001 (weight‐average molecular weight: 2000), and 3,5‐diaminobanzoic acid (DABA) were doped with lithium perchlorate (LiClO4) as the polyelectrolyte. Differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, and 7Li magic‐angle spinning (MAS) solid‐state NMR were used to monitor changes in the morphology of polyurea electrolytes corresponding to the concentration of LiClO4 dopants. DSC showed the glass‐transition temperature of the hard and soft segments increases with salt concentration. FTIR indicated the carboxylic group of DABA coordinates with the Li+ ion, and the ordered hydrogen‐bonded urea carbonyl groups are destroyed when the salt concentration exceeds 0.5 mmole of LiClO4 (gPUrea)?1. The 7Li MAS solid‐state NMR investigation of the polyurea electrolytes revealed the presence of two Li+ environments at lower temperature. Impedance spectroscopy measurements showed that the conductivity behavior followed the Arrhenius equation, and the maximum conductivity occurred when the crystalline structure of polyurea was disrupted. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 4007–4016, 2003  相似文献   

12.
Three main chain thermotropic liquid crystalline (LC) azobenzene polymers were synthesized using the azobenzene twin molecule (P4P) having the structure Phenylazobenzene‐tetraethyleneglycol‐Phenylazobenzene as the AA monomer and diols like diethylene glycol, tetraethylene glycol (TEG), and hexaethylene glycol as the BB comonomer. Terminal ? C(O)OMe units on P4P facilitated transesterification with diols to form polyesters. All polymers exhibited stable smectic mesophases. One of the polymers, Poly(P4PTEG) was chosen to prepare composite polymer electrolytes with LiCF3SO3 and ionic conductivity was measured by ac impedance spectroscopy. The polymer/0.3 Li salt complex exhibited a maximum ionic conductivity in the range of 10?5 S cm?1 at room temperature (25 °C), which increased to 10?4 S cm?1 above 65 °C. The temperature dependence of ionic conductivity was compared with the phase transitions occurring in the sample and it was observed that the glass transition had a higher influence on the ionic conductivity compared to the ordered LC phase. Reversible ionic conductivity switching was observed upon irradiation of the polymer/0.3 Li salt complex with alternate UV and visible irradiation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 629–641  相似文献   

13.
Positron lifetime measurements, performed in the temperature range 80–300 K, are reported for polyethylene (PE) and polytetrafluoroethylene (PTFE). The lifetime spectra have been analyzed using the data processing routines LIFSPECFIT and MELT. Two long-lived components appear, which are attributed to pick-off annihilation of ortho-positronium in crystalline regions and at holes in the amorphous phase. The ortho-positronium lifetimes, τ3 and τ4, are used to estimate the crystalline packing density and the size of local free volumes in the crystalline and amorphous phases. The interstitial free volume in the crystals exhibits a weak linear increase with the temperature which is attributed to thermal expansion of the crystal unit cell. In the amorphous phase, the hole volume varies between 0.053 and 0.188 nm3 (PE) and between 0.152 and 0.372 nm3 (PTFE). Its temperature variation may be fitted by two straight lines, the intersection of which is used to estimate a glass transition temperature of Tg = 195 K for both PE and PTFE. The slopes of the free volume in the glassy and crystalline phases with the temperature correlate well with each other. The coefficients of thermal expansion of the hole volume are compared with the macroscopic volume change below and above the glass transition. From this comparison a fractional hole volume at Tg of 4.5 (PE) and 5.7% (PTFE) and a number of 0.73 (PE) and 0.36 (PTFE) × 1027 holes/m3 is estimated. Finally, it is found that the intensity of o-Ps annihilation in crystals shows a different temperature dependence to that in the amorphous phase. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1513–1528, 1998  相似文献   

14.
The methods of NMR, thermogravimetric analysis, and impedance spectroscopy were used to study ion mobility, phase transitions, and ion conductivity in crystal phases in the KF-CsF-SbF3-H2O system. Analysis of 19F NMR spectra allowed tracing the dynamics of ion movement in the fluoride sublattice under temperature variations, determining their types and temperature ranges, in which they are implemented. The observed phase transitions in potassium-cesium fluoroantimonates(III) are phase transitions to the superionic state. It is found that the predominant form of ion movement in the high-temperature modifications formed as a result of phase transitions becomes diffusion of fluoride ions. According to the results of electrophysical studies the K1 − x Cs x SbF4 (x ≤ 0.2) high-temperature phases are superionic. Their conductivity reaches the values of ∼10−2 to 10−3 S/cm at 463–483 K. The high-temperature phases are stabilized under cooling, which results in a significant increase in conductivity at the room temperature.  相似文献   

15.
The dynamics of rigid-rod-like molecules are studied using rheo-optical techniques. Measurements of flow birefringence as a function of shear rate are utilized to understand the scaling behavior of rotational diffusivity with respect to concentration and temperature. The concentration scaling exponent increases with increasing concentration and the scaling laws are valid in narrow concentration windows. The Doi-Edwards (DE) scaling law Drc−2, holds at very high concentrations (cL3 > 150). The concentration scaling exponent decreases dramatically with increasing temperature at concentrations, cL2d > 1. Scaling of rotational diffusivity, with respect to temperature and solvent viscosity in the semidilute regime, does not follow the predictions of DE theory (and related caging ideas). On the contrary, a model proposed by Fixman was found to explain both the temperature and concentration dependence of the rotational diffusivity. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 181–190, 1998  相似文献   

16.
A bromine capped star‐shaped poly(methyl methacrylate) (S‐PMMA‐Br) was synthesized with CuBr/sparteine/PT‐Br as a catalyst and initiator to polymerize methyl methacrylate (MMA) according to atom transfer radical polymerization (ATRP). Then, with S‐PMMA‐Br as a macroinitiator, a series of new liquid crystal rod–coil star block copolymers with different molecular weights and low polydispersity were obtained by this method. The block architecture {coil‐conformation of the MMA segment and rigid‐rod conformation of 2,5‐bis[(4‐methoxyphenyl)oxycarbonyl] styrene segment} of the four‐armed rod–coil star block copolymers were characterized by 1H NMR. The liquid‐crystalline behavior of these copolymers was studied by differential scanning calorimetry and polarized optical microscopy. We found that the liquid‐crystalline behavior depends on the molecular weight of the rigid segment; only the four‐armed rod–coil star block copolymers with each arm's Mn,GPC of the rigid block beyond 0.91 × 104 g/mol could form liquid‐crystalline phases above the glass‐transition temperature of the rigid block. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 733–741, 2005  相似文献   

17.
The crystalline structure of polyamide‐12 (PA12) was studied by solid‐state 13C nuclear magnetic resonance (NMR) as well as by synchrotron wide‐ and small‐angle X‐ray scattering (WAXS and SAXS). Isotropic and oriented PA12 showed different NMR spectra ascribed to γ‐ and γ′‐crystalline modifications, respectively. On the basis of the position of the first diffraction peak, the isotropic γ‐form and the oriented γ′‐form were shown to be with hexagonal crystalline lattice at room temperature. When heated, the two PA12 polymorphs demonstrated different behaviors. Above 140 °C, the isotropic γ‐PA12 partially transformed into α‐modification. No such transition was observed with the oriented γ′‐PA12 phase even after annealing at temperatures close to melting. A γ′–γ transition was observed here only after isotropization by melting point. Various structural parameters were extracted from the WAXS and SAXS patterns and analyzed as a function of temperature and orientation: the degree of crystallinity, the d‐spacings, the Bragg's long spacings, the average thicknesses of the crystalline (lc) and amorphous (la) phases, and the linear crystallinity xcl within the lamellar stacks. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3720–3733, 2005  相似文献   

18.
NMR and impedance spectroscopy are used to study the ionic mobility and conductivity in crystalline samples in PbSnF4-MF systems (M = Li, Na, K) in a 150?C473 K temperature range. The 19F NMR spectral parameters, types of ionic motion, and ionic conductivity value in the PbSnF4 compound doped with alkali metal fluoride is found to be determined by the temperature, nature, and concentration of an alkali cation. The specific conductivity of the crystalline samples in PbSnF4-MF systems (M = Li, Na, K) is rather high at room temperature and hence, it seems possible to apply them in the development of functional materials with high ionic (superionic) conductivity.  相似文献   

19.
Poly[lithium-N(4-sulfophenyl) maleimide -co- methoxy oligo-(oxyethylene) methacrylates] [P(LiSMOEn)s] with three different oligoether side chains and different salt concentrations were synthesized. The copolyelectrolytes are essentially random in structure, with blocks of methoxy oligo(oxyethylene) meth-acrylate (MOEnM) recurring sporadically in between the salt units of N(4-sulfophenyl) maleimide. They all show two glass transitions in the temperature range of ?100 to 100°C. The first one below ?30°C is assigned to the oligo(oxyethylene) side chain (T g1), while the second one located between 20 and 50°C is attributed to the main chain of the polymer host (T g2). The maximum ionic conductivity of the copolymer electrolytes, 1.6 × 10?7 S cm?1 at 25°C, occurs at lithium salt concentration [Li+]/[EO] = 2.2 mol%. The ionic conductive behavior of the copolyelectrolytes follows the Vogel-Tammann-Fulcher (VTF) equation. Moreover, a special VTF behavior exists in the copolymers with shorter oligoether side chain and higher salt concentration. Sweep voltammetric results indicate that these copolyelectrolytes have a good electrochemical stability window.  相似文献   

20.
Polymer electrolytes, (PEO:LiClO4)+x IL (1‐Buty‐3‐methylimidazolium hexafluorophosphate) with varying concentration of IL; x = 0,5,10,15,20 wt % have been prepared by solution cast technique and characterized by X‐Ray diffraction, differential scanning calorimetery, FTIR, conductivity and dielectric relaxation measurements in the frequency range of 100 Hz–5 MHz. Temperature dependence of relaxation frequency and conductivity were found to be typical of thermally activated process both at T > Tm and T < Tm. Composition dependence of conductivity, dielectric relaxation, and degree of crystallinity has also been studied. On addition of IL, the degree of crystallinity after a decrease at 5 wt % IL increases slightly at 10 wt % and then finally decreasing. Variation of conductivity and relaxation frequency with composition could only be partly explained on the basis of variation of degree of crystallinity. An additional feature of ion–ion interaction (contact ion pair formation between IL or salt cations and their associated anions) has been invoked which was supported by FTIR studies. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号