首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel monomer, phenyl[bis(2-pyridyl)]methyl methacrylate (PB2PyMA), was synthesized. The solvolysis rate of PB2PyMA measured in CDCl3–CD3 OD [1/1 (v/v)] by 1H-NMR spectroscopy at 35°C was much smaller than those of triphenylmethyl methacrylate (TrMA) and diphenyl-2-pyridylmethyl methacrylate (D2PyMA). PB2PyMA was anionically polymerized with the complexes of organolithiums with (?)-sparteine (Sp), (S,S)-(+)-and (R,R)?(-)-2,3-dimethoxy-1,4-bis(dimethylamino)butanes[(+)-and (?) -DDB], and (S)-(+)-1-(2-pyrrolidinylmethyl) pyrrolidine (PMP) in toluene at low temperature. The polymers obtained with Sp and DDB complexes showed low optical activity. PMP complexes, particularly that with N,N′-diphenylethylenediamine monolithium amide, were effective in synthesizing a polymer of high optical rotation ([α]25365 ~ +1350°) which was comparable to those of poly(TrMA) and poly(D2PyMA) with one-handed helical structure. The optical rotation of poly(PB2PyMA) in a mixture of CHCl3 and 2,2,2-trifluoroethanol (9/1, v/v) slowly decreased with time. Optically active poly(PB2PyMA) coated on macroporous silica gel was able to resolve racemic compounds as a chiral stationary phase for high-performance liquid chromatography. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
A novel racemic methacrylate, (2-fluorophenyl)(4-fluorophenyl)(2-pyridyl)-methyl methacrylate1 (2F4F2PyMA), was synthesized and polymerized with chiral complexes of N,N′-diphenylethylenediamine monolithium amide (DPEDA-Li) with (−)-sparteine (Sp), (2S, 3S)-(+)-2,3-dimethoxy-1,4-bis(dimethylamino)butane (DDB), and (S)-(+)-1-(2-pyrrolidinylmethyl)pyrrolidine (PMP) in toluene at −78°C. The monomer showed higher resistance against methanolysis compared with triphenylmethyl methacrylate (TrMA) and several other analogues. In the asymmetric anionic polymerization of 2F4F2PyMA, PMP was found to be a more effective chiral ligand than DDB and Sp and gave quantitatively an optically active polymer with nearly perfect isotacticity. Enantiomer selection was observed in the polymerization of racemic 2F4F2PyMA with the chiral lithium complexes. Chiral recognition ability of the optically active poly(2F4F2PyMA) was examined by an enantioselective adsorption experiment. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2013–2019, 1998  相似文献   

3.
Almost optically pure (+)- and (−)-2-fluorophenyl-4-fluorophenyl-2-pyridylmethyl methacrylate (2F4F2PyMA) monomers were obtained by HPLC resolution of the racemic monomer and polymerized with the use of anionic and free-radical initiators. Helix-sense selectivity during the polymerization seemed to be governed mainly by the chirality of the monomer itself, and the polymers obtained by using the complex of N,N′-diphenylethylenediamine monolithium amide with (S)-(+)-1-(2-pyrrolidinylmethyl)pyrrolidine (PMP) in toluene at −78°C appeared to possess single-handed helical conformation (+)-poly[(−)-2F4F2PyMA], [α]365 + 1510°; (−)-poly[(+)-2F4F2PyMA], [α]365 − 1610°]. The single-handed helical (+)-poly[(−)-2F4F2PyMA] and (−)-poly[(+)-2F4F2PyMA] obtained with the PMP complex exhibited better chiral recognition ability toward trans-stilbene oxide compared with the single-handed helical poly(rac-2F4F2PyMA) prepared previously. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2645–2648, 1999  相似文献   

4.
A series of microspheres composed of methyl methacrylate (MMA) and N-(2-hydroxypropyl)methacrylamide (HPMA), and/or 2-(methacryloyloxy)ethyl phosphorylcholine (MPC), i.e., binary copolymer microspheres [poly(HPMA-co-MMA)KPS and poly(HPMA-co-MMA)ABIP] and ternary ones [poly(HPMA/MPC-co-MMA)KPS and poly(HPMA/MPC-co-MMA)ABIP], were prepared by emulsifier-free emulsion copolymerization using potassium peroxodisulfate (KPS) or 2,2′-azobis[2-(imidazolin-2-yl)propane] dihydrochloride (ABIP) as initiators. The decrease in ζ-potential of the polymer microspheres is caused by the addition of the HPMA and/or MPC moieties. Equilibrium water content of poly(HPMA-co-MMA)ABIP showed a remarkable swelling change with a change in response to temperature: the hydrated conformation at 28°C and the dehydrated one at above 40°C. The adsorption of protein on the polymer microspheres also changed in response to change in temperature. The ternary polymer microspheres effectively suppressed the adsorption both of Alb and Glo, less than binary ones. A series of polymer microspheres are expected to apply as a novel drug carrier with both thermosensitive and nonthrombogenic functions. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3349–3357, 1997  相似文献   

5.
Optically active copolymers of pairs of three monomers, triphenyl (methyl methacrylate)and one or two pyridyl substituted methyl methacrylate homologues, were obtained by helix-sense-selective copolymerization using complexes of organolithium with chiral ligand as anionicinitiators in toluene at low temperature. The copolymers obtained with (-)-sparteine (Sp) and(S,S)-(+)-and (R, R)-(-)-2, 3-dimethoxy-1, 4-bis (dimethylamino) butanes((+)-and (-)-DDB) complexes of organolithium showed low optical activity, but PMP complex with N, N-diphenylethyleneamine monolithium amide (PMP-DPEDA-Li) was effective in synthesizingcopolymers of high optical rotation ([α]_D~(25) about+320~1370°)which were comparable to thoseof relative homopolymers with one-handed helical structure.  相似文献   

6.
Surface molecular structures of two statistical copolymers, poly(2-hydroxyethyl methacrylate-co-butyl methacrylate) (HEMA-co-BMA) and poly[2-(2-ethoxyethoxy)ethyl methacrylate-co-butyl methacrylate] (EOEOEMA-co-BMA), were studied by X-ray photoelectron spectroscopy (XPS). Besides the classical “dry” XPS technique, where the polymer samples were air-dried, also “deep-freezing” technique was used, where the samples were investigated in deep-frozen hydrated state. The differences in results obtained by the two techniques are discussed from the point of view of the polymer surface chain reorientation in response to various environment. The reverse polymer chain reorientation from the hydrated towards dry state was also followed.  相似文献   

7.
Diphenyl-o-tolymethyl methacrylate (DPTMA) was synthesized and polymerized using initiators of organolithium complexes with (+)-(2S,3S)-dimethoxy-1,4-bis(dimethylamino) butane (DDB) and (?)-sparteine (Sp) as the chiral ligands. DDB was suitable for its complex effective to prepare optically active poly(diphenyl-o-tolylmethyl methacrylate) (PDPTMA) with one-handed helical conformation, whereas only low-molecular weight polymer was formed when Sp was used as ligand due to the repulsive hindrance between the triarylmethyl group and the ligand. A new mutarotation propeller–propeller transition, was observed for PDPTMA from the optical rotation curves and CD spectra in THF solution. The equivalent period of PDPTMA was estimated to be 14 Å based on the x-ray diffraction. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
This study was related to the investigation of the chemical fixation of carbon dioxide to a copolymer bearing epoxide and the application of the cyclic carbonate group containing copolymer‐to‐polymer blends. In the synthesis of poly[(2‐oxo‐1,3‐dioxolane‐4‐yl) methyl methacrylate‐co‐ethyl acrylate] [poly(DOMA‐co‐EA)] from poly(glycidyl methacrylate‐co‐ethyl acrylate) [poly(GMA‐co‐EA)] and CO2, quaternary ammonium salts showed good catalytic activity. The films of poly(DOMA‐co‐EA) with poly(methyl methacrylate) (PMMA) or poly(vinyl chloride) (PVC) blends were cast from N,N′‐dimethylformamide solution. The miscibility of the blends of poly(DOMA‐co‐EA) with PMMA or PVC have been investigated both by DSC and visual inspection of the blends. The optical clarity test and DSC analysis showed that poly(DOMA‐co‐EA) containing blends were miscible over the whole composition range. The miscibility behaviors were discussed in terms of Fourier transform infrared spectra and interaction parameters based on the binary interaction model. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1472–1480, 2001  相似文献   

9.
A mixture of triphenylmethyl methacrylate (TrMA) and methyl methacrylate (MMA) was polymerized with chiral anionic initiator, such as fluorenyl lithium(−)-sparteine [FlLi-(−)-Sp] and fluorenyl lithium-(+)-2S,3S-dimethoxy-1,4-bis(dimethylamino)butane [FlLi-(+)-DDB] in toluene at −78°C. The results show that after the stable helix formed, when FlLi-(+)-DDB was used as the initiator, TrMA and MMA could be copolymerized, whereas when FlLi-(−)-Sp was used, the two monomers tended to be selectively polymerized into two polymers. This phenomenon has been explained by the existence of helix-selective polymerization. © John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1925–1931, 1997  相似文献   

10.
The novel intermediate 1-(p-fluorophenyl)-2-(2′-pyridyl)ethanol or 2-[2′-(1-hydroxy-1-(p-fluorophenyl)ethyl]pyridine and the corresponding novel dehydration compound 1-(p-fluorophenyl)-2-(2′-pyridyl)ethene or 2-[p-fluorophenylvinyl]pyridine were obtained from the condensation reaction of p-fluorophenylaldehyde and 2-picoline under catalyst-and solvent-free conditions. The intermediate 1-(p-fluorophenyl)-2-(2′-pyridyl)ethanol was obtained at 42 h reaction time and temperature of 120°C, respectively. 1H-NMR, IR spectroscopic data of the 1-(p-fluorophenyl)-2-(2-pyridyl)ethanol clearly showed the presence of the-CH2-CHOH-group. The compound was obtained as a white powder with m.p. 121–122°C and a yield of 8%. For 1-(p-fluorophenyl)-2-(2-pyridyl)ethene, the reaction conditions were similar, but the reaction temperature was increased to yield the double bond in the 1-(p-fluorophenyl)-2-(2′-pyridyl)ethene. At the reaction temperature of 140°C, the compound was a slightly brown powder with a m.p. of 78°C and yield of 18%. 1H-NMR, IR spectroscopic data for the 1-(p-fluorophenyl)-2-(2′-pyridyl)ethene showed the presence of a double bond in trans configuration (-CH=CH-), characteristic of a styrylpyridine.  相似文献   

11.
The photolytic and photocatalytic degradation of the copolymers poly(methyl methacrylate-co-butyl methacrylate) (MMA-BMA), poly(methyl methacrylate-co-ethyl acrylate) (MMA-EA) and poly(methyl methacrylate-co-methacrylic acid) (MMA-MAA) have been carried out in solution in the presence of solution combustion synthesized TiO2 (CS TiO2) and commercial Degussa P-25 TiO2 (DP 25). The degradation rates of the copolymers were compared with the respective homopolymers. The copolymers and the homopolymers degraded randomly along the chain. The degradation rate was determined using continuous distribution kinetics. For all the polymers, CS TiO2 exhibited superior photo-activity compared to the uncatalysed and DP 25 systems, owing to its high surface hydroxyl content and high specific surface area. The time evolution of the hydroxyl and hydroperoxide stretching vibration in the Fourier transform-infrared (FT-IR) spectra of the copolymers indicated that the degradation rate follows the order MMA-MAA > MMA-EA > MMA-BMA. The same order is observed for the rate coefficients of photocatalytic degradation. The photodegradation rate coefficients were compared with the activation energy of pyrolytic degradation. In degradation by pyrolysis, it was observed that MMA-BMA was the least stable followed by MMA-EA and MMA-MAA. The observed contrast in the order of thermal stability compared to the photo-stability of these copolymers was attributed to the two different mechanisms governing the scission of the polymer and the evolution of the products.  相似文献   

12.
A series of copolymers composed of methoxy poly(ethylene glycol) and a hydrophobic block of poly(ɛ-caprolactone-co-propargyl carbonate) grafted with poly(2-[dimethylamino]ethyl methacrylate) was synthesized by combining ring opening polymerization, azide-alkyne click reaction, and atom transfer radical polymerization (ATRP). Well-defined copolymers with a target composition and a tailored structure were achieved via the grafting from approach by using a single catalytic system for both click reaction and ATRP. Kinetic studies demonstrated the controlled/living character of the employed polymerization methods. The thermal properties and self-assembly in aqueous medium of the graft copolymers were dependent on their composition. The resulting polymeric materials showed low cytotoxicity toward L929 cells, demonstrating their potential for biomedical applications. This type of materials containing cationic side chains tethered to biocompatible and biodegradable segments could be the basis for promising candidates as drug and gene delivery systems.  相似文献   

13.
A series of non-fluorous random copolymers, composed of 3-[tris(trimethylsilyloxy)silyl] propyl methacrylate and 2-dimethylaminoethyl methacrylate, poly(SiMA-co-DMAEMA) with different comonomer ratios were prepared and utilized as stabilizers for the free radical dispersion polymerization of methyl methacrylate (MMA) in supercritical carbon dioxide (scCO2). It was demonstrated that the composition and concentration of the stabilizer have a dramatic effect on the morphology of resulting poly methyl methacrylate (PMMA) latex. When the copolymeric stabilizer poly(SiMA-co-DMAEMA) (71:29) was employed, free-flowing spherical PMMA particles were produced in high yield. As the concentration of stabilizer increases, the resulting size of colloidal particles decreases. In addition, the monomer concentration and initial pressure affected the particle diameter of PMMA.  相似文献   

14.
ABSTRACT

Transparent organic/pre-ceramic composite films of poly(methyl methacrylate) [PMMA] and perhydropolysilazane [PHPS] were synthesized by blending poly(methyl methacrylate-co-2-hydroxyethyl methacrylate) [P(MMA-co-HEMA)] random copolymers and PHPS. In the blend films, P(MMA-graft-PHPS) graft copolymers were formed, PMMA and PHPS were microscopically phase-separated in the solid state. Morphology of the microphase separation was investigated by transmission electron microscopy by changing HEMA content of the random copolymers and blend ratio of PHPS to HEMA. To convert PHPS to silica glass, the blend films were calcinated at 100°C. The morphology of the microphase separation of the films was not changed by the calcinations; the calcinated films were transparent. When the molar content of HEMA of P(MMA-co-HEMA) and the molar content of PHPS to HEMA in feed were 14.5% and 150%, respectively, the morphology was well ordered lamellae of PMMA and silica.  相似文献   

15.
[60]Fullerenated poly(2‐hydroxyethyl methacrylate)s containing 0.6–3.0 wt % C60 were synthesized. These polymers are soluble in methanol and N,N‐dimethylformamide (DMF). [60]Fullerenated poly(2‐hydroxyethyl methacrylate)s with higher C60 contents are only sparingly soluble in DMF and virtually insoluble in other organic solvents. A loading of 1.2 wt % C60 in poly(2‐hydroxyethyl methacrylate) does not greatly affect its miscibility with poly(N‐vinyl‐2‐pyrrolidone), poly(1‐vinylimidazole), and poly(4‐vinylpyridine). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1157–1166, 2002  相似文献   

16.
The synthesis of two types of isocyanate side chain containing copolymers, poly(methyl methacrylate‐co‐isocyanatoethyl methacrylate) (P(MMA‐co‐IEM)) and poly(benzyl methacrylate‐co‐isocyanatoethyl methacrylate) (P(BnMA‐co‐IEM)), which were synthesized by Cu(0)‐mediated radical polymerization, is reported. Polymerization proceeded to high conversion giving polymers of relatively narrow molar mass distributions. The incorporation of the bulky aromatic groups in the latter copolymer rendered it sufficiently stable toward hydrolysis and enabled the isolation of the product and its characterization by 1H and 13C NMR, and FTIR spectroscopy and SEC. Both P(MMA‐co‐IEM) and P(BnMA‐co‐IEM) were functionalized with dibutylamine, octylamine, and (R)‐(+)‐α‐methylbenzyl‐amine, which further proved the successful incorporation of the isocyanate groups. Furthermore, P(BnMA‐co‐IEM) was used for the fabrication of liquid core microcapsules via oil‐in‐water interfacial polymerization with diethylenetriamine as crosslinker. The particles obtained were in the size range of 10–90 µm in diameter independent of the composition of copolymer. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2698–2705  相似文献   

17.
Abstract

Blends of poly(pyridinium ethyl methacrylate perchloride) and poly[oligo(oxyethylene) methacrylate-co-acrylamide] were prepared, and the ionic conductivity and mobility of the blends were investigated. Results indicate that both the transference of perchlorate anion and the dissociation of the polymeric salt in the comblike polyether obey the thermoactivation mechanism, and that the perchlorate anion in the blends is free.  相似文献   

18.
Poly(methyl methacrylate), polystyrene, and poly(styrene-co-methyl methacrylate) cationically stabilized latexes with up to 25% solid content were prepared by surfactant-free emulsion polymerization (SFEP) employing 1 mol % 2,2′-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (VA-044) as an initiator and stabilizer (inisurf) with respect to monomer at 70 °C. The latexes had 200–500 nm z-diameter and a very narrow size distribution (PDI < 0.05). The stabilizing amidinium moieties from VA-044 were covalently bound to the particles. After drying in air, poly(styrene-co-methyl methacrylate), PS-co-PMMA latexes were easily redispersible in water simply by addition of water and a few minutes of gentle stirring. The redispersed latex particles had colloidal characteristics very similar to the original latex particles in terms of polydispersity, size, and zeta potential. In contrast, latexes prepared with a similar formulation but using a conventional cationic surfactant (CTAB) that was not covalently bound to the particles were not redispersible. This is the simplest method reported so far for the preparation of redispersible latexes that do not use high stabilizer concentrations. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2376–2381  相似文献   

19.
The reaction of [CpRu(PPh3)2Cl] and [CpOs(PPh3)2Br] with chelating 2-(2′-pyridyl)imidazole (N ∩ N) ligands and NH4PF6 yields cationic complexes of the type [CpM(N ∩ N)(PPh3)]+ (1: M = Ru, N ∩ N = 2-(2′-pyridyl)imidazole; 2: M = Ru, N ∩ N = 2-(2′-pyridyl)benzimidazole; 3: M = Ru, N ∩ N = 2-(2′-pyridyl)-4,5-dimethylimidazole; 4: M = Ru, N ∩ N = 2-(2′-pyridyl)-4,5-diphenylimidazole; 5: M = Os, N ∩ N = 2-(2′-pyridyl)imidazole; 6: M = Os, N ∩ N = 2-(2′-pyridyl)benzimidazole). They have been isolated and characterized as their hexafluorophosphate salts. Similarly, in the presence of NH4PF6, [Cp∗Ir(μ-Cl)Cl]2 reacts in dry methanol with N ∩ N chelating ligands to afford in excellent yield [Cp∗Ir(N ∩ N)Cl]PF6 (7: N ∩ N = 2-(2′-pyridyl)imidazole; 8: N ∩ N = 2-(2′-pyridyl)benzimidazole). All the compounds have been characterized by infrared and NMR spectroscopy and the molecular structure of [1]PF6, [2]PF6 and [7]PF6 by single-crystal X-ray structure analysis.  相似文献   

20.
A novel methacrylate monomer with bulky side group, tri(2-pyridyl)methyl methacrylate(Tr2PyMA), was synthesized and polymerized. The polymer obtained by radical polymerization exhibits highisotactic tacticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号