首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The discovery of NHCs (NHC = N-heterocyclic carbenes) as ancillary ligands in transition-metal-catalysis ranks as one of the most important developments in synthesis and catalysis. It is now well-recognized that the strong σ-donating properties of NHCs along with the ease of scaffold modification and a steric shielding of the N-wingtip substituents around the metal center enable dramatic improvements in catalytic processes, including the discovery of reactions that are not possible using other ancillary ligands. In this context, although the classical NHCs based on imidazolylidene and imidazolinylidene ring systems are now well-established, recently tremendous progress has been made in the development and catalytic applications of BIAN-NHC (BIAN = bis(imino)acenaphthene) class of ligands. The enhanced reactivity of BIAN-NHCs is a direct result of the combination of electronic and steric properties that collectively allow for a major expansion of the scope of catalytic processes that can be accomplished using NHCs. BIAN-NHC ligands take advantage of (1) the stronger σ-donation, (2) lower lying LUMO orbitals, (3) the presence of an extended π-system, (4) the rigid backbone that pushes the N-wingtip substituents closer to the metal center by buttressing effect, thus resulting in a significantly improved control of the catalytic center and enhanced air-stability of BIAN-NHC-metal complexes at low oxidation state. Acenaphthoquinone as a precursor enables facile scaffold modification, including for the first time the high yielding synthesis of unsymmetrical NHCs with unique catalytic properties. Overall, this results in a highly attractive, easily accessible class of ligands that bring major advances and emerge as a leading practical alternative to classical NHCs in various aspects of catalysis, cross-coupling and C−H activation endeavors.  相似文献   

2.
Attempts towards the synthesis of two novel four-membered 1,3-diazetidine based N-heterocyclic carbenes (NHCs) containing an organic backbone with a carbonyl functionality were undertaken. These carbenes cannot be isolated but the respective carbene dimers are obtained in quantitative yield which undergo a degradation and rearrangement sequence upon thermal exposure. Some of the species involved in these thermal reactions could be isolated and characterized, others were observed by mass spectrometric experiments. Ab initio and density functional theory (DFT) calculations provide a mechanistic rationale for the experimental observations. Since dimerization is strongly favored, classic carbene trapping reactions remain a goal to achieve.  相似文献   

3.
Quantification and variation of characteristic properties of different ligand classes is an exciting and rewarding research field. N‐Heterocyclic carbenes (NHCs) are of special interest since their electron richness and structure provide a unique class of ligands and organocatalysts. Consequently, they have found widespread application as ligands in transition‐metal catalysis and organometallic chemistry, and as organocatalysts in their own right. Herein we provide an overview on physicochemical data (electronics, sterics, bond strength) of NHCs that are essential for the design, application, and mechanistic understanding of NHCs in catalysis.  相似文献   

4.
The success of homogeneous catalysis can be attributed largely to the development of a diverse range of ligand frameworks that have been used to tune the behavior of various systems. Spectacular results in this area have been achieved using cyclic diaminocarbenes (NHCs) as a result of their strong σ‐donor properties. Although it is possible to cursorily tune the structure of NHCs, any diversity is still far from matching their phosphorus‐based counterparts, which is one of the great strengths of the latter. A variety of stable acyclic carbenes are known, but they are either reluctant to bind metals or they give rise to fragile metal complexes. During the last five years, new types of stable cyclic carbenes, as well as related carbon‐based ligands (which are not NHCs), and which feature even stronger σ‐donor properties have been developed. Their synthesis and characterization as well as the stability, electronic properties, coordination behavior, and catalytic activity of the ensuing complexes are discussed, and comparisons with their NHC cousins are made.  相似文献   

5.
The 1-methyl-3-(tricyanoborane)imidazolin-2-ylidenate anion ( 2 ) was obtained in high yield by deprotonation of the B(CN)3-methylimidazole adduct 1 . Regarding charge and stereo-electronic properties, anion 2 closes the gap between well-known neutral NHCs and the ditopic dianionic NHC, the 1,3-bis(tricyanoborane)imidazolin-2-ylidenate dianion ( IIb ). The influence of the number of N-bonded tricyanoborane moieties on the σ-donating and π-accepting properties of NHCs was assessed by quantum chemical calculations and verified by experimental data on 2 , IIb , and 1,3-dimethylimidazolin-2-ylidene (IMe, IIa ). Therefore NHC 2 , which acts as a ditopic ligand via the carbene center and the cyano groups, was reacted with alkyl iodides, selenium, and [Ni(CO)4] yielding alkylated imidazoles 3 and 4 , the anionic selenium adduct 5 , and the anionic nickel tricarbonyl complex 8 , respectively. The results of this study prove that charge, number of coordination sites, buried volume (%Vbur) and σ-donor and π-acceptor abilities of NHCs can be effectively fine-tuned via the number of tricyanoborane substituents.  相似文献   

6.
This study details attempts to access N-heterocyclic carbenes (NHCs) featuring the diazaborolyl group, {(HCNDipp)2B}, as one or both of the N-bound substituents, to generate strongly electron-donating and sterically imposing new carbene ligands. Attempts to isolate N-heterocyclic carbenes based around imidazolylidene or related heterocycles, are characterized by facile N-to-C migration of the boryl substituent. In the cases of imidazolium precursors bearing one N-bound diazaborolyl group and one methyl substituent, deprotonation leads to the generation of the target carbenes, which can be characterized in situ by NMR measurements, and trapped by reactions with metal fragments and elemental selenium. The half-lives of the free carbenes at room temperature range from 4–50 h (depending on the pattern of ancillary substituents) with N-to-C2 migration of the boryl function being shown to be the predominant rearrangement pathway. Kinetic studies show this to be a first-order process that occurs with an entropy of activation close to zero. DFT calculations imply that an intramolecular 1,2-shift is mechanistically feasible, with calculated activation energies of the order of 90–100 kJ mol−1, reflecting the retention of significant aromatic character in the imidazole ring in the transition state. Trapping of the carbene allows for evaluation of steric and electronic properties through systems of the type LAuCl, LRh(CO)2Cl, and LSe. A highly unsymmetrical (but nonetheless bulky) steric profile and moderately enhanced σ-donor capabilities (compared with IMes) are revealed.  相似文献   

7.
The first examples of adducts of cyclic alkyl(amino) carbenes (CAAC) and N‐heterocyclic carbenes (NHCs) with iminoboranes have been synthesized and isolated at low temperature (?45 °C). The adducts show short B?N bonds and planarity at boron, mimicking the structures of the isoelectronic imine functionality. When di‐tert‐butyliminoborane was reacted with 1,3‐bis(isopropyl)imidazol‐2‐ylidene (IPr), the initially formed Lewis acid–base adduct quickly rearranged to form a new carbene substituted with an aminoborane at the 4‐position. Warming the iminoborane–CAAC adduct to room temperature resulted in an intramolecular cyclization to give a bicyclic 1,2‐azaborilidine compound.  相似文献   

8.
The synthesis and study of a library of cyclic (aryl)(amido)carbenes (CArAmCs), which represent a class of electrophilic NHCs that feature low calculated singlet‐triplet gaps (ΔEST=19.9 kcal mol?1; B3LYP/def2‐TZVP) and exhibit reactivity profiles expected from triplet carbenes, are described. The electrophilic properties of the CArAmCs were quantified by analyzing their respective selenium adducts, which exhibited the largest downfield 77Se NMR chemical shifts (up to 1645 ppm) measured for any NHC derivative known to date, as well as their Ir carbonyl complexes, from which large Tolman electronic parameter (TEP) values (up to 2064 cm?1) were ascertained. The CArAmCs were found to engage in reactions that are typically observed with triplet carbenes, including C?H insertions, [2+1] cycloadditions with alkenes as well as alkynes, and spontaneous oxidation upon exposure to oxygen.  相似文献   

9.
The first synthesis of 4,5-bis-(dimethylamino)-substituted imidazolium compounds was developed, which is based on the reaction of a 1,2-diamino-1,2-bis(phosphonio)ethene with lithiated formamidines. This represents the first application of this class of ethene derivatives for the preparation of heterocycles. These N-heterocyclic carbene (NHC) precursors show a remarkably reduced basicity and nucleophilicity of their NMe2 groups, which is due to the strong anomeric interactions of the latter with the imidazolium core. According to DFT calculations, these NHCs are capable of self-umpolung if sufficiently strong acceptor substituents are introduced at the carbene center. To test the self-umpolung capabilities of the NHCs, various substituents were attached to the carbene center and the obtained compounds were characterized by single-crystal X-ray analysis as well as quantum chemical computations. Strong acceptor substituents are required to induce self-umpolung, such as in the phosphonio-substituted derivative, for which partial self-umpolung was found. The N,N′-bis(4-dimethylaminophenyl)-substituted imidazolium compound represents a special case, as it incorporates as much as three two-step redox systems within the NHC framework. This will probably result in a high electronic flexibility of the corresponding nucleophilic carbenes, especially when they serve as ligands in transition metal complexes.  相似文献   

10.
郭芳杰  郭亚楠  田睿  孙京 《化学通报》2017,80(6):533-538
氮杂环卡宾(NHCs)金属配合物作为一类重要的催化剂一直是有机合成领域研究的热点。近年来,通过引入水溶性配体而得到的水溶性氮杂环卡宾过渡金属配合物受到广大科研工作者的青睐。本文主要总结了水溶性NHCs的分类、合成及其在C-C偶联反应、复分解反应以及催化加氢反应中的应用,并对水溶性NHCs金属配合物的发展趋势进行了展望。  相似文献   

11.
In the last decade, major advances have been made in homogeneous gold catalysis. However, AuI/AuIII catalytic cycle remains much less explored due to the reluctance of AuI to undergo oxidative addition and the stability of the AuIII intermediate. Herein, we report activation of aryl halides at gold(I) enabled by NHC (NHC=N-heterocyclic carbene) ligands through the development of a new class of L-shaped heterobidentate ImPy (ImPy=imidazo[1,5-a]pyridin-3-ylidene) N,C ligands that feature hemilabile character of the amino group in combination with strong σ-donation of the carbene center in a rigid conformation, imposed by the ligand architecture. Detailed characterization and control studies reveal key ligand features for AuI/AuIII redox cycle, wherein the hemilabile nitrogen is placed at the coordinating position of a rigid framework. Given the tremendous significance of homogeneous gold catalysis, we anticipate that this ligand platform will find widespread application.  相似文献   

12.
顾绍金  倪鹏  陈万芝 《催化学报》2010,26(8):875-886
 近十几年来, N-杂环卡宾的配位化学和金属有机化学发展迅速, 已成为均相催化反应中研究最为广泛的配体之一. 在许多过渡金属催化的有机合成反应中特别是偶联反应中, N-杂环卡宾与传统有机膦配体相比具有较高的反应性. 镍价格低廉, 在很多反应中有望替代贵金属钯催化剂. 本文总结了镍 N-杂环卡宾化合物在催化交叉偶联反应和还原偶联反应中的最新应用进展.  相似文献   

13.
N-Heterocyclic carbenes (NHCs) have become immensely successful ligands in coordination chemistry and homogeneous catalysis due to their strong terminal σ-donor properties. However, by targeting NHC ligands with additional functionalisation, a new area of NHC coordination chemistry has developed that has enabled NHCs to be used to build up bimetallic and multimetallic architectures. This minireview covers the development of functionalised NHC ligands that incorporate additional donor sites in order to coordinate two or more metal atoms. This can be through the N-atom of the NHC ring, through a donor group attached to the N-atom or the carbon backbone, coordination of the π-bond or an annulated π-donor on the backbone, or through direct metalation of the backbone.  相似文献   

14.
This review deals with inorganic, organometallic, and organic compounds, as well as with elements, that on the basis of their electronic structure and their reactions can be regarded formally as analogues of carbenes. These “carbene analogues” include in particular the compounds of monovalent boron, aluminum, nitrogen, and phosphorus; those of divalent silicon, germanium, tin, and lead; atomic oxygen; atomic sulfur; and atomic selenium. The preparation and chemical properties of the carbenes and their analogues are compared.  相似文献   

15.
Carbene transition‐metal complexes have become a prevalent family of catalysts enabling numerous organic transformations. Their facile synthetic access is a matter of great importance. To this end, the CuI‐NHC transfer methodology has emerged as a powerful alternative presenting attractive advantages over other methods. Herein, we report the remarkable ability of copper to transfer not only NHCs but also other types of carbenes such as abnormal NHCs (aNHCs), cyclic (alkyl)(amino)carbenes (CAACs), and mesoionic carbenes (MICs) to various transition metal precursors.  相似文献   

16.
Here we describe the fusion of two families of unusual carbon‐containing molecules that readily disregard the tendency of carbon to form four chemical bonds, namely N‐heterocyclic carbenes (NHCs) and carborane anions. Deprotonation of an anionic imidazolium salt with lithium diisopropylamide at room temperature leads to a mixture of lithium complexes of C‐2 and C‐5 dianionic NHC constitutional isomers as well as a trianionic (C‐2, C‐5) adduct. Judicious choice of the base and reaction conditions allows the selective formation of all three stable polyanionic carbenes. In solution, the so‐called abnormal C‐5 NHC lithium complex slowly isomerizes to the normal C‐2 NHC, and the process can be proton‐catalyzed by the addition of the anionic imidazolium salt. These results indicate that the combination of two unusual forms of carbon atoms can lead to unexpected chemical behavior, and that this strategy paves the way for the development of a broad new generation of NHC ligands for catalysis.  相似文献   

17.
Fischer and Schrock carbenes display highly deshielded carbon chemical shifts (>250 ppm), in particular Fischer carbenes (>300 ppm). Orbital analysis of the principal components of the chemical shift tensors determined by solid‐state NMR spectroscopy and calculated by a 2‐component DFT method shows specific patterns that act as fingerprints for each type of complex. The calculations highlight the role of the paramagnetic term in the shielding tensor especially in the two most deshielded components (σ11 and σ22). The paramagnetic term of σ11 is dominated by coupling σ(M=C) with π*(M=C) through the angular momentum operator perpendicular to the σ and π M=C bonds. The highly deshielded carbon of Fischer carbenes results from the particularly low‐lying π*(M=C) associated with the CO ligand. A contribution of the coupling of π(M=C) with σ*(M=C) is found for Schrock and Ru‐based carbenes, indicating similarities between them, despite their different electronic configurations (d0 vs. d6).  相似文献   

18.
N-Heterocyclic carbenes (NHCs) are widely used as ligands in catalysis by transition metal complexes. The catalytic activity of transition metal NHC complexes is much higher than that of the transition metal complexes bearing the phosphine and nitrogen-containing ligands. They show excellent catalytic performance in different transformations of the organic compounds, especially in the carbon—carbon and carbon—element bond forming reactions. Palladium NHC complexes are very efficient catalysts for the cross-coupling reactions. On the other hand, nickel is less expensive and regarded as a promising alternative to palladium and, therefore, it attracts increasing attention from the researches. The present review is focused on the recent advances in the synthesis of N-heterocyclic carbene complexes of nickel and palladium and their application in catalysis of cross-coupling reactions of organic, organoelement and organometallic compounds with organic halides.  相似文献   

19.
N‐heterocyclic carbenes (NHCs) based on imidazole‐2‐ylidene ( 1 ) or the saturated imidazolidine‐2‐ylidene ( 2 ) scaffolds are long‐lived singlet carbenes. Both benefit from inductive stabilization of the sigma lone pair on carbon by neighboring N atoms and delocalization of the N pi lone pairs into the nominally vacant p‐pi atomic orbital at the carbene carbon. With thermochemical schemes G4 and CBS‐QB3, we estimate the relative thermodynamic stabilization of smaller ring carbenes and acyclic species which may share the keys to NHC stability. These include four‐membered ring systems incorporating the carbene center, two trivalent N centers, and either a boron or a phosphorus atom to complete the ring. Amino‐substituted cyclopropenylidenes have been reported but three‐membered rings containing the carbene center and two N atoms are not known. Our calculations suggest that amino‐substituted cyclopropenylidenes are comparable in stability to the four‐membered NHCs but that diazacyclopropanylidenes would be substantially less effectively stabilized. Concluding the series are acyclic carbenes with and without neighboring N atoms and a series of “two‐membered ring” azapropadienenylidene cations of form :C?N?W with W = an electron‐withdrawing agent. We have studied W = NO2, CH2(+), CF2(+), and (CN)2C(+). Although these systems display a degree of stabilization and carbene‐like electronic structure, the stability of the NHCs is unsurpassed. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
The σ-donor properties of NHC ligands (NHC?=?N-heterocyclic carbene) are crucial in controlling their interaction with transition metals, and as a consequence, to determine the selectivity and reactivity of NHCs in transition-metal-catalysis. Herein, we report a simple NMR method for estimating the σ-donor properties of NHC ligands based on a straightforward 1H NMR measurement of ligand precursors. We present evaluation of σ-donating properties for a range of NHC ligands varied by structure and electronics that are relevant to transition-metal-catalysis. We expect that the simple measurement of σ-donating properties of NHCs, together with the known methods for evaluating sterics and π-backbonding, will enhance the understanding of the properties of NHCs in transition-metal-catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号