首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This paper reports the synthesis and study of new pH-sensitive DB24C8-based [2]rotaxane molecular shuttles that contain within their axle four potential sites of interaction for the DB24C8: ammonium, amine, Weinreb amide, and ketone. In the protonated state, the DB24C8 lay around the best ammonium site. After either deprotonation or deprotonation-then-carbamoylation of the ammonium, different localizations of the DB24C8 were seen, depending on both the number and nature of the secondary stations and steric restriction. Unexpectedly, the results indicated that the Weinreb amide was not a proper secondary molecular station for the DB24C8. Nevertheless, through its methoxy side chain, it slowed down the shuttling of the macrocycle along the threaded axle, thereby partitioning the [2]rotaxane into two translational isomers on the NMR timescale. The ketone was successfully used as a secondary molecular station, and its weak affinity for the DB24C8 was similar to that of a secondary amine.  相似文献   

2.
The synthesis of a novel pH‐sensitive hetero[4]rotaxane molecular machine through a self‐sorting strategy is reported. The original tetra‐interlocked molecular architecture combines a [c2]daisy chain scaffold linked to two [2]rotaxane units. Actuation of the system through pH variation is possible thanks to the specific interactions of the dibenzo‐24‐crown‐8 (DB24C8) macrocycles for ammonium, anilinium, and triazolium molecular stations. Selective deprotonation of the anilinium moieties triggers shuttling of the unsubstituted DB24C8 along the [2]rotaxane units.  相似文献   

3.
Molecular shuttles are an intriguing class of rotaxanes which constitute prototypes of mechanical molecular machines and motors. By using stopped-flow spectroscopic techniques in acetonitrile solution, we investigated the kinetics of the shuttling process of a dibenzo[24]crown-8 ether (DB24C8) macrocycle between two recognition sites or "stations"--a secondary ammonium (-NH2+-)/amine (-NH-) center and a 4,4'-bipyridinium (bipy2+) unit--located on the dumbbell component in a [2]rotaxane. The affinity for DB24C8 decreases in the order -NH2+- > bipy2+ > -NH-. Hence, shuttling of the DB24C8 macrocycle can be obtained by deprotonation and reprotonation of the ammonium station, reactions which are easily accomplished by addition of base and acid to the solution. The rate constants were measured as a function of temperature in the range 277-303 K, and activation parameters for the shuttling motion in both directions were determined. The effect of different counterions on the shuttling rates was examined. The shuttling from the -NH2+- to the bipy2+ station, induced by the deprotonation of the ammonium site, is considerably slower than the shuttling in the reverse direction, which is, in turn, activated by reprotonation of the amine site. The results show that the dynamics of the shuttling processes are related to the change in the intercomponent interactions and structural features of the two mutually interlocked molecular components. Our observations also indicate that the counterions of the cationic rotaxane constitute an important contribution to the activation barrier for shuttling.  相似文献   

4.
The structural complexity of mechanically interlocked molecules are very attractive to chemists owing to the challenges they present. In this article, novel mechanically interlocked molecules with a daisy‐chain‐containing hetero[4]rotaxane motif were efficiently synthesized. In addition, a novel integrative self‐sorting strategy is demonstrated, involving an ABB‐type (A for host, dibenzo‐24‐crown‐8 (DB24C8), and B for guest, ammonium salt sites) monomer and a macrocycle host, benzo‐21‐crown‐7 (B21C7), in which the assembled species in hydrogen‐bonding‐supported solvent only includes a novel daisy‐chain‐containing hetero[4]pseudorotaxane. The found self‐sorting process involves the integrative recognition between B21C7 macrocycles and carefully designed components simultaneously containing two types of secondary ammonium ions and a host molecule, DB24C8 crown ether. The self‐sorting strategy is integrative to undertake self‐recognition behavior to form one single species of pseudorotaxane compared with the previous report. This self‐sorting system can be used for the efficient one‐pot synthesis of a daisy‐chain‐containing hetero[4]rotaxane in a good yield. The structure of hetero[4]rotaxane was confirmed by 1H NMR spectroscopy and high‐resolution electrospray ionization (HR‐ESI) mass spectrometry.  相似文献   

5.
Two functional main‐chain linear polyrotaxanes, one a covalent polymeric chain that threads through many macrocycles ( P1 ) and the other a poly[n]rotaxane chain that is composed of many repeating rotaxane units ( P2 ), were synthesized by employing strong crown‐ether/ammonium‐based ( DB24C8 / DBA ) host–guest interactions and click chemistry. Energy transfer between the wheel and axle units in both polyrotaxanes was used to provide insight into the conformational information of their resulting polyrotaxanes. Steady‐state and time‐resolved spectroscopy were performed to understand the conformation differences between polymers P1 and P2 in solution. Additional investigations by using dynamic/static light scattering and atomic force microscopy illustrated that polymer P1 was unbending and had a rigid rod‐like structure, whilst polymer P2 was curved and flexible. This flexible topology facilitated the self‐assembly of polymer P2 into relatively large ball‐shaped particles. In addition, the energy transfer between the wheel and axle units was controlled by the addition of specific anions or base. The anion‐induced energy enhancement was attributed to a change in electrostatic interactions between the polymer chains. The base‐driven molecular shuttle broke the DB24C8 / DBA host–guest interactions. These results confirm that both intra‐ and intermolecular electrostatic interactions are crucial for modulating conformational topology, which determines the assembly of polyrotaxanes in solution.  相似文献   

6.
A zinc porphyrin‐containing [3]rotaxane A was synthesized through a copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction. Energy donors and acceptor porphyrin were introduced to dibenzo[24]crown‐8 (DB24C8) and dibenzyl ammonium (DBA) units of [3]rotaxane A to understand the intramolecular energy transfer process. Investigations of the photophysical properties of [3]rotaxane A demonstrated that the intramolecular efficient energy transfer readily occurred from the donors on the wheels to the porphyrin center on the axis. The fluorescence of energy donors in the region of 400 to 450 nm was efficiently absorbed by the porphyrin acceptor under irradiation at 345 nm, and finally a red light emission at about 600 nm was achieved. Further investigation indicated that the conformation of [3]rotaxane A was self‐modulated by changing its concentration in CH2Cl2. The triazole groups on the wheel coordinated or uncoordinated to Zn2+ through intramolecular self‐coordination with the change in the concentration of [3]rotaxane A in CH2Cl2. Therefore, this conformational change was reversible in a non‐coordinating solvent such as CH2Cl2 but inhibited in a coordinating solvent such as THF. Such interesting behaviors were rarely observed in porphyrin derivatives. This self‐modulation feature opens up the possibility of controlling molecular conformation by varying concentration.  相似文献   

7.
[structure: see text] Post-assembly covalent modification using Wittig chemistry of [2]rotaxane ylides, wherein NH(2)(+) centers in the dumbbell-shaped components are recognized by dibenzo[24]crown-8 (DB24C8) rings, has afforded a [3]catenane and a [3]rotaxane with a precise and synthetically prescribed shortage of DB24C8 rings. The nondegenerate pairs of translational isomers present in both of these interlocked molecular compounds provide the fundamental platform on which to construct sensory devices and nanochemomechanical systems.  相似文献   

8.
Two new [2]rotaxane-based molecular shuttles, in which a mechanically bound dibenzo[24]crown-8 (DB24C8) macroring shunts back and forth between two dialkylammonium recognition sites situated on a chemical dumbbell, have been constructed by a novel synthetic strategy that relies upon the use of the tert-butoxycarbonyl (Boc) protecting group. During the syntheses of both molecular shuttles, this protecting group masks a dialkylammonium recognition center which is liberated only after the [2]rotaxane constitution is established. In both cases, the molecular shuttles' other dialkylammonium center is essential for the rotaxane-forming reactions and it ensures that DB24C8 is interpenetrated by threadlike precursors, as a result of noncovalent bonding interactions, to produce [2]pseudorotaxanes which are stoppered subsequently through 1,3-dipolar cycloadditions between azides and bulky acetylenedicarboxylates. The new molecular shuttles have been examined by means of dynamic 1H NMR spectroscopy, which reveals that the movements of the DB24C8 macroring are very highly dependent both on solvent properties and on the nature of the spacer unit linking the two dialkylammonium centers. Thus, DB24C8 shunts facilely between the dialkylammonium centers when the shuttles are dissolved in solvents that readily donate their nonbonding electrons into noncovalent bonds, e.g., DMF, and when spacer units that do not offer much steric resistance to shuttling, e.g., hexamethylene, are used. On the other hand, shuttling is difficult in solvents that are less inclined to donate their electrons into noncovalent bonds, e.g., (CDCl2)2, and when relatively bulky benzenoid spacer units, e.g., p-xylylene, link the two dialkylammonium centers. It has been proposed that the DB24C8 might act as a "ferry" which carries a proton between dialkylammonium and dialkylamine moieties in a singly protonated [2]rotaxane by means of ion-dipole interactions.  相似文献   

9.
A fifteen-year riddle has been settled: neutralization, the most popular chemical event, of a crown ether/sec-ammonium salt-type rotaxane has been achieved and a completely nonionic crown ether/sec-amine-type rotaxane isolated. A [2]rotaxane was prepared as a typical substrate from a mixture of dibenzo[24]crown-8 ether (DB24C8) and sec-ammonium hexafluorophosphate (PF(6)) with a terminal hydroxy group through end-capping with 3,5-dimethylbenzoic anhydride in the presence of tributylphosphane as a catalyst in 90% yield. A couple of approaches to the neutralization of the ammonium rotaxane were investigated to isolate the free sec-amine-type rotaxane by decreasing the degree of thermodynamic and kinetic stabilities. One approach was the counteranion-exchange method in which the soft counterion PF(6)(-) was replaced with the fluoride anion by mixing with tetrabutylammonium fluoride, thus decreasing the cationic character of the ammonium moiety. Subsequent simple washing with a base allowed us to isolate the free sec-amine-type rotaxane in a quantitative yield. The other approach was a synthesis based on a protection/deprotection protocol. The acylation of the sec-ammonium moiety with 2,2,2-trichloroethyl chloroformate gave an N-carbamated rotaxane that could be deprotected by treating with zinc in acetic acid to afford the corresponding free sec-amine-type rotaxane in a quantitative yield. The structure of the free sec-amine-type rotaxane was fully confirmed by spectral and analytical data. The generality of the counteranion-exchange method was also confirmed through the neutralization of a bisammonium-type [3]rotaxane. The mechanism was studied from the proposed potential-energy diagram of the rotaxanes with special emphasis on the role of the PF(6)(-) counterion.  相似文献   

10.
An acid–base switchable molecular shuttle based on a [2]rotaxane, incorporating stable radical units in both the ring and dumbbell components, is reported. The [2]rotaxane comprises a dibenzo[24]crown-8 ring (DB24C8) interlocked with a dumbbell component that possesses a dialkylammonium (NH2+) and a 4,4′-bipyridinium (BPY2+) recognition site. Deprotonation of the rotaxane NH2+ centers effects a quantitative displacement of the DB24C8 macroring to the BPY2+ recognition site, a process that can be reversed by acid treatment. Interaction between stable 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radicals connected to the ring and dumbbell components could be switched between noncoupled (three-line electron paramagnetic resonance (EPR) spectrum) and coupled (five-line EPR spectrum) upon displacement of the spin-labelled DB24C8 macroring. The complete base- and acid-induced switching cycle of the EPR pattern was repeated six times without an appreciable loss of signal, highlighting the reversibility of the process. Hence, this molecular machine is capable of switching on/off magnetic interactions by chemically driven reversible mechanical effects. A system of this kind represents an initial step towards a new generation of nanoscale magnetic switches that may be of interest for a variety of applications.  相似文献   

11.
The mild and highly efficient thiol-ene click reaction has been used to construct a rotaxane incorporating dibenzo-24-crown-8 (DB24C8) and a dibenzylammonium-derived thread in high yield under the irradiation of UV light. A rotaxane containing a disulfide linkage in the macrocycle was also synthesized by the thiol-ene click reaction. It has been demonstrated that the formation of the [2]rotaxane with the disulfide bond in the macrocycle occurs by a mechanism that is different to the threading-followed-by-stoppering process. The successful construction of a rotaxane directly from its constituent components, the macrocycle containing a disulfide linkage and the dibenzylammonium hexafluorophosphate salt, suggests that the space within the macrocycle incorporating the disulfide linkage is smaller than the phenyl unit and a plausible reaction mechanism has been proposed as follows: A small amount of the initiator forms two radicals upon the absorption of UV irradiation; the radicals act as a "key" to "unlock" the disulfide bond in the macrocycle. The resulting crown ether like moiety in the macrocycle is clipped around the ammonium ion center in the dumb-bell-shaped compound. The [2]rotaxane is generated upon recombination of the disulfide linkage.  相似文献   

12.
A dynamic covalent approach to disulfide-containing [2]- and [3]rotaxanes is described. Symmetrical dumbbell-shaped compounds with two secondary ammonium centers and a central located disulfide bond were synthesized as components of rotaxanes. The rotaxanes were synthesized from the dumbbell-shaped compounds and dibenzo-[24]crown-8 (DB24C8) with catalysis by benzenethiol. The yields of isolated rotaxanes reached about 90 % under optimized conditions. A kinetic study on the reaction forming [2]rotaxane 2 a and [3]rotaxane 3 a suggested a plausible reaction mechanism comprising several steps, including 1) initiation, 2) [2]rotaxane formation, and 3) [3]rotaxane formation. The whole reaction was found to be reversible in the presence of thiols, and thermodynamic control over product distribution was thus possible by varying the temperature, solvent, initial ratio of substrates, and concentration. The steric bulk of the end-capping groups had almost no influence on rotaxane yields, but the structure of the thiol was crucial for reaction rates. Amines and phosphines were also effective as catalysts. The structural characterization of the rotaxanes included an X-ray crystallographic study on [3]rotaxane 3 a.  相似文献   

13.
A pair of bistable [2]rotaxane, molecular shuttles were prepared that combine 1,2-bis(pyridinium)ethane and benzylanilinium recognition sites; acid-base controlled shuttling of DB24C8 was accompanied by a change in colour and/or fluorescence intensity.  相似文献   

14.
Although rotaxane chemists have long believed that the tert-butyl group is bulkier than the cavity of dibenzo-24-crown-8-ether (DB24C8), it is essentially smaller than the cavity of DB24C8. The tert-butyl (or 4-tert-butylphenyl) group can actually function as an end-cap of DB24C8-based rotaxanes when the intercomponent interaction is effectively operative. When such attractive interaction is removed, deslippage occurs. [structure: see text]  相似文献   

15.
[2]Pseudorotaxanes, [2]rotaxanes and metal-organic rotaxane framework materials that utilise DB24C8 as the wheel component are well known and structural variations based on changing the axle component are common. Studies in which the DB24C8 wheel is structurally modified are much more limited. Herein, is described the synthesis of symmetrical DB24C8 analogues containing four CH(2)OR (R = CH(2)CH(2)CH(3), CH(2)(C(6)H(5)), C(6)H(5) and C(6)H(4)(4-COOEt)) substituents on the 4 and 5 positions of the aromatic rings. The effect of these molecular appendages on the stability and structures of the interpenetrated and interlocked molecules derived from these new wheels is described. The major effects are an increase in association constants for the formation of [2]pseudorotaxanes relative to DB24C8, the crystal packing of [2]rotaxanes and a change on the internal structure of a 2D MORF (R = C(6)H(5)) compared to DB24C8.  相似文献   

16.
The efficient synthesis and very easy isolation of dibenzo[24]crown‐8‐based [2]pseudorotaxane building blocks that contain an active ester motif at the extremity of the encircled molecular axle and an ammonium moiety as a template for the dibenzo[24]crown‐8 is reported. The active ester acts both as a semistopper for the [2]pseudorotaxane species and as an extensible extremity. Among the various investigated active ester moieties, those that allow for the slippage process are given particular focus because this strategy produces fewer side products. Extension of the selected N‐hydroxysuccinimide ester based pseudorotaxane building block by using either a mono‐ or a diamino compound, both containing a triazolium moiety, is also described. These provide a pH‐dependent two‐station [2]rotaxane molecular machine and a palindromic [3]rotaxane molecular machine, respectively. Molecular machinery on both interlocked compounds through variation of pH was studied and characterized by means of NMR spectroscopy.  相似文献   

17.
Hung WC  Liao KS  Liu YH  Peng SM  Chiu SH 《Organic letters》2004,6(23):4183-4186
The mild and efficient reaction between triethyl phosphite and benzylic azides allows us not only to construct rotaxanes in high yield from dibenzo[24]crown-8 (DB24C8) and dibenzylammonium (DBA(+))-derived threads but also to incorporate di(p-toluidine)[24]crown-8, which binds DBA(+) ions much more weakly than does DB24C8, into a corresponding [2]rotaxane.  相似文献   

18.
《化学:亚洲杂志》2017,12(12):1381-1390
In this study, we synthesized [2]rotaxanes possessing three recognition sites—a dialkylammonium, an alkylarylamine, and a tetra(ethylene glycol) stations—in their dumbbell‐like axle component and dibenzo[24]crown‐8 (DB24C8) as their macrocyclic component. These [2]rotaxanes behaved as four‐state molecular shuttles: i) under acidic conditions, the DB24C8 unit encircled both the dialkylammonium and alkylarylammonium stations; ii) under neutral conditions, the dialkylammonium unit was the predominant station for the DB24C8 component; iii) under basic conditions, when both ammonium centers were deprotonated, the alkylarylamine unit became a suitable station for the DB24C8 component; and iv) under basic conditions in the presence of an alkali‐metal cation, the tetra(ethylene glycol) unit recognized the DB24C8 component through cooperative binding of the alkali‐metal ion. In addition, we observed that the [2]rotaxanes exhibited selective recognition for metal cations. These shuttling motions of the macrocyclic component proceeded reversibly.  相似文献   

19.
First rotaxane having tert-ammonium axle was prepared from tert-ammonium salt axle and dibenzo-24-crown-8-ether (DB24C8) wheel, suggesting that tert-ammonium salt axle forms the corresponding threaded complex with a crown ether. Same rotaxane was obtained quantitatively by N-methylation of sec-ammonium-type rotaxane. The tert-ammonium-type rotaxane was neutralized with amine base to tert-amine-type rotaxane in 100% yield, indicating the first isolation of ‘nonionic’ amine-type rotaxane. The reversible protonation and deprotonation of tert-amine-type rotaxane were achieved.  相似文献   

20.
A bis‐branched [3]rotaxane, with two [2]rotaxane arms separated by an oligo(para‐phenylenevinylene) (OPV) fluorophore, was designed and investigated. Each [2]rotaxane arm employed a difluoroboradiaza‐s‐indacene (BODIPY) dye‐functionalized dibenzo[24]crown‐8 macrocycle interlocked onto a dibenzylammonium in the rod part. The chemical structure of the [3]rotaxane was confirmed and characterized by 1H and 13C NMR spectroscopy and high‐resolution ESI mass spectrometry. The photophysical properties of [3]rotaxane and its reference systems were investigated through UV/Vis absorption, fluorescence, and time‐resolved fluorescence spectroscopy. An efficient energy‐transfer process in [3]rotaxane occurred from the OPV donor to the BODIPY acceptor because of the large overlap between the absorption spectrum of the BODIPY moiety and the emission spectrum of the OPV fluorophore; this shows the important potential of this system for designing functional molecular systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号