首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
Partially exfoliated nanocomposite(2) has been synthesized by intercalation of poly(propylene carbonate)(PPC) into commercial clay,Cloisite 20B(PPC/C-20B).Nanocomposite 2 was characterized phiso-chemically and exhibited high thermal,mechanical and anti-water sorption properties as compared to PPC and intercalated nanocomposite(1) of PPC/C-20B having same amount of clay.TGA results revealed that the thermal decomposition temperature(Td,50%) of 2 increased significantly,being 40 K and 17 K higher than that of pure PPC and 1,respectively,while DSC measurements indicated that the nano-filler dispersion of 2 increased the glass transition temperature from 21℃to 31℃.Accordingly,2 showed high elastic modulus,hardness and anti-water absorption capacity.These thermal,mechanical and anti-water absorption improvements are of great importance for the application of PPC as packaging and biomaterials.  相似文献   

2.
4-Amino-2-alkylimino-2H-thiopyranes (5) and 4-amino-2-alkylaminothiopyranylium halogenides (4) resp. on heating in refluxingDMFA are rearranged in the presence of Na-ethylate to 1-alkyl-4-aminodihydro-2(1H)-pyridinethiones (2). Also 2-methylthiothiopyranylidenammonium iodides (6) and 2-methylthio-4H-thiopyrane-4-one (7) can be transformed into 1-substituted 2(1 H)-pyridinethiones (2) by heating in prim. amines. On treatment with alkali. 4-dimethylaminothiopyranylium iodide (4 a) is transformed into its base5 a and hydrolyzed to8. 5a and8 are rearranged to the pyridinethiones2 a and the tautomers9 A,B. The structure of the rearranged pyridinethiones2 was proved by the1-phenylderivate2 a. Thus 4-methyl-3-penten-2-on reacts with phenylthiourea via the phenylimino-1,3-thiazine (14) to give 3-phenyl-2(1H)pyridinethione (15).15 is transformed by themethylpyrimidine-pyridine-rearrangement to the 1-phenylpyridinethione2 a. The mechanism of theDimroth-reaction of 2-alkylimino-2H-thiopyranes (5) and the stereochemistry of the1-benzyl-6-phenyl-2(1H)-pyridinethiones2 are discussed.  相似文献   

3.
3-Amino-4-(tert-butyl-NNO-azoxy)furoxan (1a) and 4-amino-3-(tert-butyl-NNO-azoxy)-furoxan (1b) and their acetyl derivatives 6a,b were obtained. The equilibria 1a ai 1b and 6a ? 6b were studied. Furoxan 6b can undergo thermal rearrangement into 3-[(tert-butyl-NNO-azoxy)(nitro)methyl]-5-methyl-1,2,4-oxadiazole (7), prolonged heating of which gives N-(2-tert-butyl-5-nitro-1-oxido-2H-1,2,3-triazol-4-yl)acetamide (8). With the transformation 78 as an example, the possibility of participation of the azoxy group in the Boulton-Katritzky rearrangements was demonstrated for the first time.  相似文献   

4.
Bromination of 1-benzyl-4-methyl-3.4-dihydro-2(1H)-pyrimidinone (9 a) with 1 mole Br2 in CHCl3 yields 1-benzyl-5-bromo-6-hydroxy-4-methyltetrahydro-2(1H)-pyrimidinone,12 a, or the 6-ethoxypyrimidinone13 a, according to whether H2O orEtOH is used in working up. With 2 moles Br2,9 a analogously affords the 5.5-dibromopyrimidinnes14 a or15 a. Bromination of the 6-hydroxypyrimidinone10 a yields the same products,12 a and13 a, or14 a and15 a respectively, while the 4-phenyl-pyrimidinones9 b and11 b yield the corresponding 5-bromo-and 5.5-dibromopyrimidinones13 b and15 b. The structures of the compounds12 a-15 b are confirmed by their NMR data and chemical properties: the oxopyrimidinylmethylureas16 a and17 a are formed by the action of methylurea on12 a and13 a, or on14 a and15 a respectively; with hexamethylenetetramine,12 a reacts to give the 5.6-dihydroxypyrimidinone18 a, while13 b is transformed to the 4-phenylpyrimidinone19 b. 13 b was also synthesized from α-bromocinnamaldehyde. The mechanism of bromination is discussed.  相似文献   

5.
Photoirradiation of Me2CO–H2O solution of pent-4-en-1-ol (1a) with a high-pressure mercury lamp in a test tube gave 8-hydroxyoctan-2-one (3a) in 66 % yield along with oxetane (4a) and the isomer (4a′) in 10 % yield. Irradiation of the running Me2CO–H2O solution of 1a in the flow system of a microchannel reactor (MCR) gave mainly 4a. The photoreaction of 1,1-diphenylethene (2a) with triethylamine gave a Markovnikov-type adduct (5a) and an anti-Markovnikov-type adduct (6a). The use of the MCR enhanced the production of 5a. These phenomena were explained by the light-path length effects of the MCR.  相似文献   

6.
Electrochemical oxidation of catechols (1) has been studied in the presence of cathodically generated 3-amino-4-hydroxycoumarin (3a) as a nucleophile in aqueous solutions, using cyclic voltammetry and controlled-potential coulometry. The results indicate that the o-benzoquinones derived from catechols (1) participate in Michael addition reaction with 3-amino-4-hydroxycoumarin (3a) to form the corresponding new heterocyclic compounds (7) (oxidized form of coumestan derivatives). The electrochemical process consists of a multi-step including (a) cathodic reduction of 4-hydroxy-3-nitrocoumarin (3) to 3-amino-4-hydroxycoumarin (3a), (b) anodic oxidation of catechols (1) to related o-benzoquinone (2), (c) the Michael addition reaction of 3-amino-4-hydroxycoumarin (3a) to o-benzoquinone (2), and (d) anodic oxidation of formed adduct. The paired electrochemical synthesis of compounds 7a and 7b has been successfully performed in a one-pot process at carbon rods as working and counter electrodes in an undivided cell.  相似文献   

7.
The basic product synthesized byTraube andSchwarz from mesityl oxide and guanidine has not been 4.4.6-trimethyl-4.5-dihydro-2-pyrimidinamine (1), but a mixture containing the 4.4.6-trimethyl-3.4-dihydro-2(1H)-pyrimidinimine (resp. an isomeric pyrimidinamine)2 a (resp.2 b, 2 c) and the dimeric 4.4′-methylenedi[2(1H)-pyrimidinimine] (resp. an isomeric methylenedipyrimidinamine)3 a (resp.3 b, 2 c) and the dimerisation reaction were studied in a series of experiments. The product of the reaction of guanidine and phorone is not the guanidinopropylpyrimidine8 4, but the 4.4′-spirobi[2(1H)-pyrimidinimine] (resp. a spirobipyrimidinamine)11 a (resp.11 b, 11 c). No determination was possible on the basis of NMR whether the condensation products of guanidine—in solutions ofDMSO-d6—are pyrimidinimines (2 a, 3 a, 11 a) or pyrimidinamines (2 b resp.2 c, 3 b resp.3 c, 11 b resp.11 c) or mixtures of the isomeric compounds. The NMR-and mass spectra of2 a (resp.2 b, 2 c),3 a (resp.3 b, 3 c),11 a (resp.11 b, 11 c) and their derivates are discussed.  相似文献   

8.
A series of pyridofuro compounds were synthesized from 4-(4-chlorophenyl)-1,2-dihydro-2-oxo-6-(thiophen-2-yl)pyridine-3-carbonitrile (1) as starting material. Alkylation of 1 with ethyl bromoacetate gave the corresponding ester 2, which was condensed with hydrazine hydrate to afford the corresponding acid hydrazide derivative 3. Thrope-Ziegler cyclization of 2 with sodium methoxide gave furo[2,3-b]pyridine derivative 4, which was reacted with thiosemicarbazide, allyl isothiocyanate, formamide or hydrazine hydrate to give furopyridine derivatives 5–8, respectively. The latter compound 8 was cyclized with acetylacetone or formic acid to give the corresponding compounds 9 and 10, respectively. Furthermore, sulfurization of 1 with P2S5 gave the corresponding thioxopyridine 11, which was reacted with glycosyl (or galactosyl) bromide, morpholine or piperidine to give the corresponding thioglycoside 12a,b and Mannich base 14a,b derivatives. The deacetylation of 12a,b gave the corresponding deacetylated thioglycosides 13a,b, respectively. All the newly synthesized compounds were characterized by the elemental analyses and spectroscopic evidences (IR, 1H- and 13C NMR).  相似文献   

9.
4-Alkylaminopyridinethiones · HCl (1 · HCl) react with bis-trichlorethylmalonate (3) predominantly to 5-alkylamino-4H-thiopyrano [2,3-b]pyridine-4-ones (6). With alcohols in the presence of acids at 25°C6 undergoes an alcoholysis to the corresponding alkyl-3-(2-thioxo-3-pyridyl)propionates (9). On heating in dilute alkali6 is hydrolysed via 4-alkylamino-2-thioxopyridyl-propylketones (11) to the tautomers, 4-hydroxy-2-thioxopyridylpropylketone (12 A) and 2-thioxo-3-(1-hydroxybutenyl)-4-piperidon (12 B), resp. On refluxing with alkali the ethyl-pyridylpropionate9 a is cyclisized to the 1-alkyl-1,6-naphthyridine-2(1H)-one (4 a), but boiling in ethanolic acid hydrolyses9 a via the pyridylpropionic acid10 to 4-alkyl-aminopyridylpropylketone (11 a). The latter can be transformed via the tautomers12 A,B and 2-methylthio-3-pyridylpropylketone (13) to the 4-hydroxy-3-butyrylpyridone (14 A) and its tautomer, 3-(1-hydroxy-butenyl)-piperidine-2,4-diones (14 B) resp. The structure of14 A,B is established by reaction of 4-isopropylamino-2(1H)-pyridone (2) with butanoylchloride to the 4-isopropylamino-3-butyrypyridone (15) and hydrolysis of15 to the tautomers14 A,B.  相似文献   

10.
Oxidation of the α- and β-4-phenyl-1,2,4-triazolin-3,5-dione adducts of vitamin D3 (2 and1) withMCPBA yields two diastereomeric mixtures of the (5,10)-(7,8)-dioxiranes3 a,3 b,3 c and4 a,4 b respectively. The corresponding benzoates5 a,5 b,6 a and6 b were prepared and the X-ray crystal structure of5 b was determined. This analysis proved5 b to be the (5R, 1 OS)-(7R, 8R)-dioxirane of the β-resp. (6S)-4-phenyl-1,2,4-triazolin-3,5-dione adduct1 of vitamin D3.  相似文献   

11.
The synthesis of 1-(3-thienyl)-benzimidazol-2-ones (3 a and4), described in an earlier paper1, has been further investigated. The Na-salt of3 a is converted to a benzimidazolone substituted in position 3 (3 b). Dehydrogenation of the thiophene nucleus of3 a with chloranil yields5 a, which undergoes substitution in position 3 with Cl(CH2)2N(CH3)2 to give5 b. Monochlorination of5 a yields5 c, the structure of which is confirmed by1H-NMR-spectroscopy.5 d is obtained by reaction of the Na-salt of5 c with Cl(CH2)2N(CH3)2.   相似文献   

12.
1.2.4.5-Tetrahydro-3.2.4-benzothiadiazepine-3.3-dioxide (3a) (1 a) was prepared both by treating o-xylylene dibromide with sulfamide and by reaction of o-xylylene diamine (1 c) with SO2Cl2 or sulfamide. 4-Chloro-o-xylylene-diamine (2 c) and 1.2-bis(β-aminoethyl)benzene (8), resp., yield 7-chloro-1.2.4.5-tetrahydro-3.2.4-benzothiadiazepine-3.3-dioxide (4 a) and 1.2.3.5.6.7-hexahydro-4.3.5-benzothiadiazonine-4.4-dioxide (9), resp., on treatment with sulfamide. 3 a, 4 a, and9 yield the corresponding N,N′-dialkyl derivatives on treatment of their Na-salts with alkyl halides. Several dialkyl derivatives of3 a were prepared also by reaction of1 a with N,N′-dialkyl sulfamides.  相似文献   

13.
Two powerful methods for the synthesis of indole-based chalcone derivatives, namely (E)-1-(2-chloro-1-(4-chlorobenzyl)-1H-indol-3-yl)-3-aryl(hetaryl)prop-2-en-1-ones (3al), are described, involving the ultrasound-assisted or solvent-free Claisen–Schmidt condensation reaction of 3-acetyl-2-chloro-1-(4-chlorobenzyl)indole (1) and various aromatic aldehydes (2al). The ultrasound-assisted Claisen–Schmidt condensation reaction was carried out using 1,4-dioxane as solvent and KOH as base at room temperature to give the corresponding products (3al) in yields ranging from 75 to 88 %. Alternatively, the Claisen–Schmidt condensation reaction could also be conducted under solvent-free conditions to obtain the products (3al) in comparable yields. The two procedures offer easy access to indole-based chalcone derivatives in short reaction times and good yields under mild conditions. Particularly, the advantageous aspect of the solvent-free method could avoid the use of environmentally hazardous and toxic solvents, and also reduced costs. The structures of all the newly synthesized indole-based chalcones 3al were confirmed by spectral data and elemental analyses.  相似文献   

14.
A series of new benzo-15-crown-5 derivatives (16) containing formyl and imine groups were prepared. New formyl crown ethers (1 and 2) were prepared by reaction of 4′,5′-bis(bromomethyl)benzo-15-crown-5 with 2-hydroxy-3-methoxybenzaldehyde (o-vanillin) and 2-hydroxy-5-methoxybenzaldehyde in the presence of NaOH. New Schiff bases (36) were synthesized by the condensation of corresponding aldehydes with 1,3-diaminopropane and 1,4-diaminobutane. Sodium and potassium complexes (1a6a and 1b6b) of the crown compounds forming crystalline complexes of 1:1 (Na+:ligand) and 1:2 (K+:ligand) stoichiometries were also synthesized. The structures of the aldehydes 1 and 2, imines 36 and complexes (1a3a and 1b3b) were confirmed on the basis of elemental analyses, IR, 1H- and 13C-NMR, and mass spectroscopy.  相似文献   

15.
Crotonaldehyde resp. cinnamaldehyde react with guanidiniumchloride to give 2-amino-6-guanidinio-4-methyl-3.4.5.6-tetrahydro-1H-pyrimidiniumdichloride (4 a) resp. 6-hydroxy-4-phenylpyrimidiniumchloride3 b and the 4.6-dihydroxy-2.8-dimethyl (resp. 2.8-diphenyl)octahydropyrimido[1.2?a]pyrimidiniumchlorides6 a and6 b, resp. Action of 2.4-(or 2.6-)xylenol on4 a resp.3 b yields 2-amino-6-[2(or 4)-hydroxy-3.5-dimethylphenyl]-4-methyl-(resp. 4-phenyl)-3.4.5.6-tetrahydro-1H-pyrimidiniumchlorides (8 a resp.8 b or9 a resp.9 b), which are transformed to the zwitterionic compounds10 a–11 b by aqu. NaOH.6 a reacts with 2.4-xylenol to give the triazaoxabenzanthraceniumchlorid12 a·HCl (prove for the structure given for6 a). The chemical properties and the NMR-, UV-, mass- and IR-spectra of the compounds are discussed.  相似文献   

16.
The catalyst-free reactions of Baylis-Hillman alcohols (1a-i) with 2-aminobenzimidazole (2) in THF-H2O (1:4) were developed for the convenient and greener synthesis of benzimidazo[1,2-a]pyrimidinone derivatives (3a-i). The pesticidal activities of 3a-i were examined to investigate a new biological activity of the imidazo[1,2-a]pyrimidinone-type compounds.  相似文献   

17.
Reduction (both catalytically and with complex hydrides) of the diphenyl diketones1 (a, b, c andd withn=0, 2, 3 and 4) was investigated mainly with regard to the diastereomeric ratio of the diols2. For2 a and2 b exact results were obtained by NMR spectroscopy (without or with shift reagents) of the diol mixture (2 a) or after stereoselective cyclization to the cyclic ethers (3 b). AlsoGC andLLC were employed for the analysis of2 a (GC of the trimethylsilyl derivatives) and for the ethers3, resp. (GC for3 a and3 d;LLC for3 b and3 c). The reduction of1 a, 1 b (and in part1 c) proceeds with high stereoselectivity; themeso-diol preponderates in the case of2 a, therac.-diol for2 b and2 c; with increasingn the diastereomeric ratio approaches the statistical ratio of 1∶1. Preparations of the stereoisomeric diols (2 b, c andd via acetylenic precursors) and of the cyclic diphenyl ethers (by stereoselective cyclization and/or chromatographic separation;3 c and3 d for the first time) as well as the determination of their configurations are described. The latter was achieved by NMR and for the ethers3 also by hydrogenation of the corresponding heteroaromatics.  相似文献   

18.
Three DOPO (9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide)-containing benzoxazin (3a3c) were successfully prepared from 2-hydroxybenzaldehyde, p-substituted aniline, and DOPO by a three-step procedure. Since the phosphorus and the adjacent aliphatic carbon are both chiral centers, two pairs of enantiomers exist in 3a, 3b, or 3c. Compound 3a′, which is a pair of enantiomers existing in 3a, was isolated using recrystallization in ethyl acetate solvent. All the structures were confirmed by FT-IR, NMR, and MS spectra. The X-ray analysis indicated that the 3a′ is the RR/SS enantiomers and belongs to the monoclinic crystal system, its space group being P21/c. The thermal properties were investigated by DSC and TG. It has been found that the peak temperature of thermally induced ring-opening reaction was around 260–270 °C. Compounds (3a3c, 3a′, and 3c′) had two similar thermal processes from 50 to 600 °C in TG, whereas the compound 3b′ had three thermal processes. The char yields of 3a3c were 18.10, 16.84, and 16.34 %, respectively, while those of 3a′–3c′ were 26.00, 31.80, and 19.21 %, respectively. The results indicated that compounds 3a′–3c′ had better char properties than 3a3c.  相似文献   

19.
A series of new compounds bearing a 1,3-benzothiazol-2-one nucleus have been synthesized using 5,6-dimethyl-3-(2-oxo-propyl)-1,3-benzothiazol-2-one (1) as a key starting compound. The reaction of 1 with some nucleophilic compounds led to the formation of compounds 2, 3, 4, 5a, b, 6 and 7a, b. The thiosemicarbazone derivatives 7a, b were treated with a number of halo ketones to produce the new heterocyclic compounds 913, while their reaction with acid anhydrides led to the formation of the derivatives 14 and 15. Also, compound 1 was condensed with different aromatic aldehydes to afford the corresponding chalcones 1822. The structures of all the novel compounds have been determined by analytical and spectral data. Some of the compounds were selected to be evaluated as anti-inflammatory and analgesic agents.  相似文献   

20.
Guanidine reacts with chalkone1 a, 4-methylchalkone1 b and 4′-methylchalkone1 c resp. to yield mixtures of pyrimidinamines2 a,3 b and3 c (=3 b) resp. with (2:1)-condensatesA,B andC resp. The structures of the compoundsA-C (whicha priori could be dihydropyrimidopyrimidines4 a-c or5 a-c or6 a-c) are elucidated. NMR-investigations show that the saltsA-C · HCl must be symmetrically substituted pyrimidopyrimidinyliumchlorides4 a-c · HCl or5 a-c · HCl (and not6 a-c · HCl). Furthermore, it is proved by chemical methods that the condensatesB · HCl andC · HCl are pyrimidopyrimidinyliumchlorides4 b andc · HCl (and not5 b andc · HCl): The structure ofB · HCl (=4 b · HCl) was established by total synthesis of dimethylpyrimidopyrimidinyliumpicrate9 b-Pi from10 c (via13 c · HI-18 · HCl) and transformation ofB · HCl into an identical salt9 b-Pi via hexahydropyrimidopyrimidine8 b · HCl. The structure ofC · HCl (=4 c · HCl) was determined by comparison of its hydrogenation product (=8c · HCl) with8 b · HCl. The structure of condensateA · HCl (=4 a · HCl) results from conclusion by analogy. The spatial structure of4 a-c · HCl and8 a-c · HCl is discussed; it was established by NMR that the salts are racemic mixtures of stereoisomers4 a-c K · HCl and8 a-c K · HCl resp. and their antipodes (with C2 symmetry).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号