首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
飞秒激光在透明材料加工过程中会出现超连续光谱现象。在阐述超连续光谱产生的原理的基础上,为了分析PMMA材料在不同偏振光下产生的超连续光谱的阈值,设计了线偏光和圆偏光及不同能量加工PMMA材料的实验方案。利用光谱仪对产生的超连续光谱信号进行采集及处理,分析出不同能量下的线偏振(TE和TM)和圆偏振两种偏振态的超连续光谱的变化规律,并对比了相同能量下线偏振和圆偏振的超连续光谱的区别。实验中采用脉宽160 fs、中心波长为775 nm的飞秒激光,实验结果表明,同一偏振下能量越大,光谱谱宽越宽;通过对比不同能量下的光谱特性,观测出产生超连续光谱的阈值, 线偏振光的阈值为0.46 μJ,圆偏振光的阈值为0.586 μJ;对比相同能量下的线偏振和圆偏振光,线偏振的谱宽比圆偏振的宽。  相似文献   

2.
基于电子自旋弛豫全光开关中的瞬态特性   总被引:1,自引:1,他引:0  
蒋振  王涛  王冰  李刚 《光学学报》2008,28(7):1374-1378
设计了基于电子自旋弛豫的透射式全光开关模犁.该光开关具有开关时间短、结构简单,光学非线性强等特点.研究在右旋圆偏振光抽运下 GaAs/AlGaAs半导体多量子阱(MQWs)中以相空间填充(PSF)和库仑屏蔽(CS)为主要因素导致的激子吸收饱和行为,计算与抽运光同向(探测光与抽运光的圆偏振方向相同)和反向(探测光与抽运光的圆偏振方向相反)的圆偏振探测光吸收系数的变化,得到两种圆偏振光差分透射率改变量随延迟时间的变化.实验采用飞秒抽运-探测技术,获得了室温下GaAs/AlGaAs多量子阱同向圆偏振探测光的透射曲线,观察到了明显的饱和吸收现象,与数值模拟的结果相符.  相似文献   

3.
偏振门用于对散射介质成像的蒙特卡罗模拟研究   总被引:2,自引:1,他引:1  
李伟  何永红  马辉 《光子学报》2008,37(3):518-522
通过蒙特卡罗模拟研究偏振光在散射介质中的传播,对通过散射介质的偏振光的强度分布进行模拟,分析了偏振门和空间滤波对成像的影响.模拟结果表明,对于Rayleigh散射体,偏振门与空间滤波可以减小散射光的影响,提高图像对比度,圆偏振光入射比线偏振光具有更高的对比度.对于Mie散射粒子,偏振门的作用有限,不同偏振光的结果差别不大.对双组分的散射介质也进行了模拟,偏振门在这种体系中仍能提高图像对比度.  相似文献   

4.
利用同轴结构实现纳米粒子光学捕获,研究不同偏振光对光势阱的影响,并通过优化结构参数实现圆偏振下的等离激元涡旋场模式。研究结果表明:该同轴结构在线偏振光750 nm处透射率最大,并且在入射光强为1μW/μm2时势阱深度达到17kBT;圆偏振光在同轴结构上方形成涡旋场,能量流势阱深度为8kBT。所设计的同轴结构扩大了光场作用范围,优化了光梯度力作用方向,提高了捕获低浓度小尺度粒子的效率。该研究结果对于低浓度生物分子光学捕获具有一定的参考意义。  相似文献   

5.
置于磁场中的受激原子所发射的光是偏振光,光的偏振性与发射的方向有关.沿磁场方向发射的光是左旋圆偏振光和右旋圆偏振光;沿垂直于磁场方向发射的光是在磁场方向上线偏振的光和在垂直于磁场方向上线偏振的光.我们以原子从初态L=1到末态L=0跃迁的辐射为例,说明原子辐射的偏振性. 原子的辐射过程是发射光子的过程.光子带有一定的能量、动量和自旋角动量(自旋角量子数为1).原子发射光子的过程必须满足相应的守恒定律.原子辐射的偏振性正是由角动量守恒定律所决定的. 取磁场方向为Z轴,初态L=1的原子角动量相对于Z轴有三个取向,磁量子数M一十…  相似文献   

6.
偏振态对准相位匹配线性电光效应的影响   总被引:1,自引:1,他引:0  
系统研究入射光为不同偏振态时的准相位匹配线性电光效应。在准相位匹配条件满足时,若入射光为线偏振光,则o光与e光能够彻底耦合,出射光仍为线偏振光,且其偏振方向可以通过外加电场调节到任意角度;若入射光为椭圆偏振光,则o光与e光不能彻底耦合,输出光为与输入光同椭圆率的椭圆偏振光,其椭圆方位角可以通过调节外加电场旋转到任意角度;若入射光为圆偏振光,则o光与e光之间没有能量耦合,输出光仍为圆偏振光。准相位匹配条件满足的线性电光效应在保偏的偏振旋转器中有重要应用。在准相位匹配条件不满足时,o光与e光由于相位失配而没有能量耦合,输出光的偏振态取决于o光与e光的初始相位差和双折射(自然双折射和电光双折射)引起的附加相位差,特别是极化占空比为0.5时,电光效应引起的双折射总效果为零。  相似文献   

7.
亚波长光栅的偏振闪耀特性   总被引:6,自引:4,他引:2       下载免费PDF全文
 使用琼斯矩阵的方法推导了连续结构亚波长光栅的衍射方程,给出了光栅衍射效率表达式,对偏振特性与衍射特性进行了研究。发现连续结构亚波长光栅仅存在3个衍射级,总衍射效率为100%,且衍射效率可在衍射级间任意分配,0级的偏振态与入射光的偏振态相同,±1级衍射光偏振态与入射光无关,-1级为左旋圆偏振光,+1级为右旋圆偏振光。通过设置入射光偏振态与光栅相位延迟等参数,可使光栅具有闪耀特性,据此可用于设计高效偏振光分束器和偏振光开关。  相似文献   

8.
实验研究了线偏振和圆偏振状态下的飞秒强激光脉冲在块状材料中的传输过程。不同偏振的激光脉冲在传输过程中得到了不同程度的光谱展宽,经色散补偿后,脉冲时域宽度均得到了压缩。详细分析了压缩脉冲的脉宽以及啁啾情况与入射激光脉冲能量之间的关系,比较了飞秒激光在线偏振及圆偏振情况下的不同压缩效果。在线偏振入射光情况下得到了最短21fs的压缩脉冲宽度,在圆偏振情况下得到的最短脉冲宽度为22fs。实验结果表明,这种光谱展宽与色散补偿方式对圆偏振光同样适用,而且圆偏振的入射激光将更有利于对更高能量的脉冲进行压缩。在色散补偿量相同的情况下,压缩效果随入射脉冲能量变化的规律符合理论估计。  相似文献   

9.
激光偏振编码制导中铌酸锂晶体编码技术研究   总被引:4,自引:0,他引:4  
针对激光驾束制导系统光束能量调制方式的原理缺陷,讨论了用铌酸锂晶体的电光效应实现空间偏振编码的原理。对铌酸锂晶体的电光效应进行了理论分析,在此基础上设计了基于普科尔效应的空间偏振编码调制器。确定了X轴方向加电场的最佳运用方式,使得经过编码器后的线偏振光具有理想的偏振态梯度分布。对接收数据处理方式进行了讨论,得到了差和比方式对旋转不敏感的结论。在实验室中用可见光进行了近场实验,获得了从最上方近似右旋圆偏振光到中间的线偏振光再到最下方的左旋圆偏振光的偏振态分布。实验曲线表明获得了与理论计算基本一致的结果。  相似文献   

10.
针对强度调制新型偏振光谱仪,研究了基于傅里叶变换法实现偏振光谱信息解调的可行性.结合强度调制偏振光谱仪实现偏振光谱信息调制的机理,给出了采用傅里叶变换法实现偏振光谱信息解调过程的完整数学推导,并对解调过程进行了计算机仿真模拟.模拟结果表明:基于傅里叶变换的解调方法可以高保真获取待测光辐射的偏振光谱信息,将该方法应用于强度调制偏振光谱仪偏振光谱信息的解调是可行的.  相似文献   

11.
针对不同浓度下介质厚度改变对后向散射光偏振特性影响的问题,以典型蒙特卡罗偏振模型为基础,提出了一种基于后向散射的可变介质厚度蒙特卡罗偏振模型。根据本文提出的模型开展了仿真实验,得到了不同浓度下介质厚度与后向散射偏振特性的影响关系。仿真结果表明,介质厚度在不同浓度下均对后向散射光的偏振度有着直接影响;在低浓度的情况下,介质厚度增加主要起消偏作用,浓度达到一定阈值后,介质厚度增加起起偏作用;在低浓度的情况下,线偏振光的后向散射光偏振保持特性优于圆偏振光,浓度达到一定阈值后,圆偏振光的后向散射光偏振保持特性优于线偏振光;在浓度极高的情况下,线偏振光与圆偏振光的保持特性趋于一致。  相似文献   

12.
孙晨  赵义武  安衷德  付强  战俊彤  段锦 《应用光学》2017,38(6):1012-1017
针对大气环境中粒子浓度对激光传输过程的影响问题,以油雾粒子为研究对象,利用油雾粒子在扩散过程中产生的非均匀环境,进行了偏振激光传输的半实物仿真实验。实验采用532 nm激光器,分别研究了水平线偏振光、45°线偏振光以及左旋圆偏振光在油雾扩散过程中偏振态的变化情况。利用粒度仪对扩散环境进行了量化标定。实验结果表明:在油雾扩散过程中,浓度越高,偏振度变化的随机性越大,圆偏振光的保偏性优于线偏振光。在相同浓度下,0°线偏振光对偏振态的保持性要优于45°线偏振光。在浓度极高的情况下,体积浓度为2 mg/L及其以上时,线偏振光与圆偏振光的保持性趋向一致。  相似文献   

13.
利用MATLAB软件对不同偏振光在真空、各向同性介质、线型各向异性介质以及圆型各向异性介质中的传播过程进行了三维动态模拟,能够加深学生对光的偏振概念以及各种偏振光与不同介质之间相互作用原理的理解。  相似文献   

14.
非阿贝尔腔量子电动力学模型下偏振光场的影响   总被引:1,自引:0,他引:1  
谢良文  王发强  梁瑞生  靳玮  郭建军 《光学学报》2012,32(5):527001-259
通过使用场正交算符,而不是传统的玻色算符,研究了非阿贝尔腔量子电动力学(QED)模型中原子和偏振光场的相互作用。讨论了初始双模偏振光场对于原子布居数反转以及偏振光场的压缩特性的影响。结果表明,原子布居数反转的演化不仅与偏振椭圆的相位角有关,也与偏振椭圆的椭率角有关;只有当偏振椭圆是右旋圆偏振光时,原子布居数反转随时间的演化基本不变,趋近于初始值0,而当偏振椭圆是左旋圆偏振光时,原子布居数反转随时间的演化呈现周期性的崩塌复苏变化。另外,当初始光场是左旋圆偏振光时,光场可以出现周期性的压缩;而当初始光场是右旋圆偏振光时,光场的压缩不会持续出现。  相似文献   

15.
具有超衍射极限尺寸的空间结构光在远场超分辨成像、光镊、微纳米加工等领域都有着重要的应用.本文基于偏振光的相位调制原理,结合光学实验与光场数值模拟开展了在空间生成具有超衍射极限尺寸的空间结构光的研究.首先设计了一种兼备圆形π与涡旋形2π相位板特点的新型相位板,并且实验观察到了高数值孔径系统中新型相位板调制圆偏振高斯光的焦点处的空间结构光形貌.随后通过结合矢量衍射积分理论的数值模拟,得出了一种具有超衍射极限尺寸、且同时呈现中心对称与轴对称的空间结构光.最后,本文详细讨论分析了新型相位板调制圆偏振光、线偏振光、径向偏振光以及角向偏振光所获得的空间结构光分布特点.结果显示,圆、线、径向与角向偏振条件下得到的空间结构光横向最小暗斑的半高全宽分别为0.31λ,0.32λ,0.24λ和0.36λ;在光轴上,线、径向与角向偏振光情况下的中心暗斑的半高全宽分别为0.8λ,0.78λ,0.76λ,而圆偏振光在轴向方向没有电矢量分布.  相似文献   

16.
实验研究了圆偏振和线偏振高强度飞秒激光脉冲在正常色散材料中传输时的时空自压缩现象。实验中利用BK7玻璃作为正色散材料,比较研究了不同偏振入射情况下脉冲波形及频谱的变化规律。圆偏振光入射时,可以获得更短脉冲宽度的压缩脉冲和更窄的光谱宽度。在圆偏振光入射条件下,50 fs入射脉冲成功地自压缩到了19 fs,获得了大于2.5倍的压缩倍率。所以利用圆偏振光可以获得更短压缩脉冲,更大能量,更好光束质量的激光。  相似文献   

17.
以斯托克斯矢量理论为基础,通过搭建偏振传输半实物模拟装置进行模拟实验,观测激光在模拟环境(不同浓度的椭球粒子在非均匀分布状态)下偏振度(degree of polarization, DOP)的变化。实验选取灵芝孢子碳化粉末作为椭球粒子的实验对象,通过烟雾机将椭球粒子形成不同浓度的烟雾,研究入射波长为532 nm、671 nm的激光在0°、+45°、90°的线偏振光以及左旋圆偏振光经过模拟环境后偏振度(DOP)的变化情况。实验结果表明:入射偏振光随着烟雾浓度的增大,偏振度呈下降趋势;3种入射线偏振光随浓度增大降幅不尽相同,没有明显的规律可循;不同波长低浓度烟雾时,线偏振光与圆偏振光的偏振度下降幅度大抵相同,大约为3%左右;随着烟雾浓度的增大,线偏振光的偏振度表现出不同程度的下降,可达20%,圆偏振光的偏振度仅下降5%,表现出了较好的保偏能力。  相似文献   

18.
在利用步辐射光源的偏振特性进行自旋相关X射线散射及吸收谱实验来研究材料的磁学性质时,需要应用圆偏振光,这就提出了对具有高通量、高偏振度' 长连续可调的圆偏振X射线的需求;另一方面标定实验所用X射线的圆偏振度也成为这一研究领域的关键技术。由于X射线多光束衍射强度与σ场和π场的光程差δ相关,通过测量圆偏振分析晶体的多光束衍射的强度分布,可以获得入射X射线的圆偏振度。实验在美国国家同步辐射光源实验室X25光束线实验站进行,光子能量为7.1keV的圆偏振X射线由线偏振X射线经过一厚度为0.5mm、晶面为[111]的金刚石晶体产生。通过测量多光束衍射强度,确定了斯托克斯参量。实验值与X射线动力学理论计算结果能较好地吻合。  相似文献   

19.
构造了三角形轮廓多级台阶量化相位光栅模型,用傅里叶光学方法详细推导了光栅衍射场强的解析表达式。分析了这种光栅对偏振光的分离和聚焦特性,并优化设计了两个光栅。数值模拟和分析表明,模型光栅能够将o光和e光分离任意距离,并分别在指定的方向上聚焦。计算结果显示,取8~16个量化级就可以得到较大的衍射效率,两偏振光的能量比较均衡,偏振性能较好;量化级数的进一步增加只是衍射效率有所增加,并不能提高偏振性能。  相似文献   

20.
同时全偏振成像仪是一种基于大口径离轴三反系统的高空间分辨率偏振遥感器,它采用棱镜分振幅的同时偏振测量方法。由于仪器偏振器件多,特性复杂,导致仪器的测量矩阵偏离理想值。为保证仪器的偏振测量精度,需要进行有效的偏振定标。提出了一种利用标准线偏振光源与圆偏振光源对一种分振幅型同时偏振成像仪进行定标的方法。线偏振定标源定标仪器测量矩阵的前三列,利用最小二乘拟合傅里叶系数获得定标系数;圆偏振定标源定标仪器测量矩阵的第4列,采用将光源旋转90°测量两次求平均的方法消除光源圆偏振态的非理想性。最后通过实验验证了同时全偏振成像仪的偏振测量精度,结果表明:定标后偏振测量精度优于1%(P≤0.3)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号