首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
介绍了高效液相色谱与电感耦合等离子体质谱(HPLC-ICP-MS)联用技术在环境、材料和生命科学样品的元素形态分析中的研究进展,着重介绍该联用方法的接口技术及几种与ICP-MS联用的主要色谱类型,阐述了几种样品预处理方法,并对样品引入系统、复杂基体分离和元素形态定量和结构分析等联用技术在元素形态分析中所面临的问题进行讨论。  相似文献   

2.
综述了电感耦合等离子体质谱(ICP-MS)及其联用分析技术的进展,论述了其在相关核工业及环境领域中分析痕量或超痕量的放射性同位素、长寿命核素、元素形态等的应用。讨论了电感耦合等离子体质谱及联用技术的发展趋势,并对目前存在的主要问题及可能的解决方案进行了讨论。  相似文献   

3.
Separation techniques coupled to inductively coupled plasma mass spectrometry (ICP-MS) is reviewed. ICP-MS technique is described briefly. Coupling of the different separation techniques are described, together with the most common applications used for each technique that has been described in the literature. An overview for the future of separation techniques coupled to ICP-MS with regard to elemental speciation is discussed.  相似文献   

4.
On-line hyphenations consisting of a separation and a detection step are one of the most efficient techniques for identification and characterization of metal containing species. The high resolution power of capillary electrophoresis (CE) is used for the separation of three selenium species, whereas either electrospray ionization mass spectrometry (ESI-MS) or inductively coupled plasma mass spectrometry (ICP-MS) are taken for molecule or element specific detection. This work gives an overview about the possibilities and limitations, when using the two hyphenated systems for speciation investigations. In order to show the power of the two complementary techniques, a CZE method using 5% acetic acid as background electrolyte was applied to the separation of selenomethionine (SeM), selenocystine (SeC) and selenocystamine (SeCM). Depending on the species and the element, the detection limits of the CE/ICP-MS hyphenated system are up to 102 to 103 times better than that for the CE/ESI-MS system.  相似文献   

5.
The use of inductively coupled plasma mass spectrometry (ICP-MS) coupled with separation techniques for the purpose of elemental speciation has recently gained a lot of attention. Much of this is due to ever improving separation capabilities of Chromatographic techniques, the high sensitivity of ICP-MS, and the continuing development of better interface techniques. Additionally, there is a growing awareness of the need to monitor various species of an analyte, rather than just total analyte concentrations, due to their often varying natures. For the sake of learning from different elemental speciation approaches, this review brings together some selected types of elemental speciation which have been recently seen in literature. These include separations using various forms of liquid chromatography, such as reversed phase, reversed phase ion pairing, micelle, ion exchange, and size exclusion. Elemental speciation employing gas Chromatographie separations and supercritical fluid separations are discussed as well as elemental speciation using capillary electrophoresis.  相似文献   

6.
Arsenic speciation analysis   总被引:2,自引:0,他引:2  
Gong Z  Lu X  Ma M  Watt C  Le XC 《Talanta》2002,58(1):77-96
Nearly two dozen arsenic species are present in the environmental and biological systems. Differences in their toxicity, biochemical and environmental behaviors require the determination of these individual arsenic species. Considerable analytical progresses have been made toward arsenic speciation analysis over the last decade. Hyphenated techniques involving a highly efficient separation and a highly sensitive detection have become the techniques of choice. Methods based on high-performance liquid chromatography separation with inductively coupled plasma mass spectrometry, hydride generation atomic spectrometry, and electrospray mass spectrometry detection have been shown most useful for arsenic speciation in environmental and biological matrices. These hyphenated techniques have resulted in the determination of new arsenic species, contributing to a better understanding of arsenic metabolism and biogeochemical cycling. Methods for extracting arsenic species from solid samples and for stabilizing arsenic species in solutions are required for obtaining reliable arsenic speciation information.  相似文献   

7.
To gain an understanding of the function, toxicity and distribution of trace elements, it is necessary to determine not only the presence and concentration of the elements of interest, but also their speciation, by identifying and characterizing the compounds within which each is present. For sensitive detection of compounds containing elements of interest, inductively coupled plasma mass spectrometry (ICP-MS) is a popular method, and for identification of compounds via determination of molecular weight, electrospray ionization mass spectrometry (ESI-MS) is gaining increasing use. ICP-MS and ESI-MS, usually coupled to a separation technique such as chromatography or capillary electrophoresis, have already been applied to a large number of research problems in such diverse fields as environmental chemistry, nutritional science, and bioinorganic chemistry, but a great deal of work remains to be completed. Current areas of research to which ICP-MS and ESI-MS have been applied are discussed, and the existing instrumentation used to solve speciation problems is described.  相似文献   

8.
微量金属元素的毛细管电泳分析方法及应用   总被引:9,自引:1,他引:8  
屈锋  王敏  林金明 《分析化学》2005,33(4):562-568
综述了毛细管电泳分析微量金属元素的基本原理、分离模式(CZE、MKEC、非水电泳、芯片分离等)、检测方法(紫外、荧光、化学发光、安培、电导、质谱联用技术)等的进展和该技术在环境、生物医学领域的研究与应用。引用文献94篇。  相似文献   

9.
Application of capillary electrophoresis (CE) as a high-resolution separation technique in metalloproteomics research is critically reviewed. The focus is on the requirements and challenges involved in coupling CE to sensitive element and molecule-specific detection techniques such as inductively coupled plasma mass spectrometry (ICP–MS) or electrospray ionisation mass spectrometry (ESI–MS). The complementary application of both detection techniques to the structural and functional characterisation of metal-binding proteins and their structural metal-binding moieties is emphasised. Beneficial aspects and limitations of mass spectrometry hyphenated to CE are discussed, on the basis of the literature published in this field over the last decade. Recent metalloproteomics applications of CE are reviewed to demonstrate its potential and limitations in modern biochemical speciation analysis and to indicate future directions of this technique.  相似文献   

10.
Three methods, high-performance liquid chromatography hyphenated with inductively coupled plasma mass spectrometry, high-performance liquid chromatography-tandem mass spectrometry, and ion chromatography, were compared for simultaneous speciation of seven commercial gadolinium-based contrast agents for magnetic resonance imaging. Optimizations of experimental conditions for individual method were conducted, respectively. Methods of high-performance liquid chromatography hyphenated with inductively coupled plasma mass spectrometry and high-performance liquid chromatography-tandem mass spectrometry showed the capability of speciation for all seven target compounds, whereas ion chromatography was only suitable for three of them when using electronic conductivity detector. The limits of detection and limits of qualification by the three methods were compared, and high-performance liquid chromatography hyphenated with inductively coupled plasma mass spectrometry was found to be the most sensitive one. The limits of detection for seven target compounds by high-performance liquid chromatography hyphenated with inductively coupled plasma mass spectrometry were in the range of 0.15–0.55 pg. Thus, high-performance liquid chromatography hyphenated with inductively coupled plasma mass spectrometry was chosen as the final method and successfully applied to speciation analysis of seven gadolinium-based contrast agents in wastewater and whole blood. Compounds of gadoxetic acid disodium, gadobenate dimeglumine, gadodiamide, and gadobentetate dimeglumine were found in wastewater.  相似文献   

11.
Five arsenic species, trimethylarsine oxide, dimethylarsenic acid, monomethylarsonic acid, arsenobetaine and sodium arsenite, in urine were analysed by inductively coupled plasma mass spectrometry with ion chromatography (IC ICP MS). Since the toxicities of different arsenic compounds are different, speciation of arsenic compounds is very important in the investigation of metabolisms. In this paper, we applied ion chromatography (IC) as a separation device and inductively coupled plasma mass spectrometry (ICP MS) as a detection device. For separation of the five arsenic compounds, an anion-exchange column and, as mobile phase, tartaric acid were used. The eluent from the IC column was introduced directly into the nebulizer of the ICP MS and analysed at 75 amu. Detection limits were from 4 to 9 pg as arsenic.  相似文献   

12.
A specific procedure is proposed for investigating the chemical speciation of zinc (Zn) in plant tissues, viz., the extraction of Zn compounds from Plantago lanceolata L. followed by the chromatographic separation and inductively coupled plasma mass spectrometry (ICP-MS) identification of these compounds. In order to separate the Zn compounds, both size-exclusion (SEC) and ionexchange liquid chromatography (IC) were used in direct sequential and reverse sequential modes. In the direct sequential mode, the entire extract undergoes SEC separation and then the individual fractions are injected onto the ion-exchange column. The molecular size distribution is evaluated by SEC coupled on-line to the UV detector. In the reverse sequential mode, the entire extract undergoes the ion-exchange chromatographic separation and then the individual fractions are injected onto the size-exclusion column. The identification of Zn incorporated into the compounds is further performed using ICP-MS. This procedure is particularly useful in speciation studies when identification of the individual components of the element is problematic due to the lack of suitable standard substances, as is the case for Zn compounds. The proposed procedure facilitates assignment of the signals to the individual components of the fractions for both types of chromatography, thus rendering the chemical speciation of Zn possible when the lack of suitable standard substances impedes the identification of individual components.  相似文献   

13.
The application of inductively coupled plasma – time-of-flight mass spectrometry for the speciation analysis of organolead compounds in environmental waters is described. Construction of the transfer line was achieved by means of a relatively simple and rapid coupling procedure. Derivatization of the ionic lead species was achieved by in-situ propylation with sodium tetrapropylborate; simultaneous extraction of the derivatized compounds in hexane was followed by separation and detection by capillary gas chromatography hyphenated to inductively coupled plasma–time-of-flight mass spectrometry. Detection limits for the different organolead species ranged from 10 to 15 fg (as Pb), corresponding to procedural detection limits between 50 and 75 ng L–1, on the basis of a 50 mL snow sample, extraction with 200 μL hexane, and subsequent injection of 1 μL of the organic extract on to the column. The accuracy of the system was confirmed by additional analysis of the water samples by capillary gas chromatography coupled with microwave-induced plasma–atomic-emission spectrometry and the analysis of a standard reference material CRM 605 (road dust) with a certified content of trimethyllead.  相似文献   

14.
岩石矿物分析   总被引:2,自引:0,他引:2  
评述了2006年6月-2008年5月期间国内在岩石矿物分析领域的研究与应用现状及进展概况。内容包括综述与会议、试样的前处理、滴定法和重量法、光度法、原子光谱法、电化学分析法、X射线荧光光谱法、电感耦合等离子体质谱法及联用技术、化学物相分析及形态分析、质量控制及标准方法等。收集文献462篇。  相似文献   

15.
Capillary electrophoresis (CE) has become a powerful analytical technique for the separation of a variety of analytes ranging from small inorganic ions to large biomolecules such as proteins and nucleic acids. A selective and sensitive detector for CE has been one of the most important and challenging prerequisites for the growth of CE. On-column UV-Vis detectors are commonly used to determine the analytes separated by CE. However, these detectors are often not very selective. Other detection techniques such as mass spectrometry, laser induced fluorescence, amperometry, and inductively coupled plasma spectrometry have been investigated to provide a more sensitive and selective detection for the target analytes. However, relatively few studies have been published on the use of inductively coupled plasma atomic emission spectrometry (ICP-AES) as a means of detection in CE separation.  相似文献   

16.
丁芳芳  朱珏  郭睿  张博 《色谱》2019,37(2):132-142
高效微纳液相分离技术如纳流液相色谱、毛细管电泳、微芯片色谱/电泳等与电感耦合等离子体质谱(ICP-MS)检测技术联用,既具有前端分离技术高选择性、高灵敏度、快速、低样品消耗的特点,又结合了后端ICP-MS检测分辨率高、动态范围宽、可绝对定量等优势,正在发展成为一种重要的高内涵联用分析手段。该文对近年来纳流液相分离与ICP-MS联用装置的发展作一系统介绍,对其在化学与生物化学分析等领域的应用予以综述,并展望了该联用技术的发展前景。  相似文献   

17.
硒的化学形态分析   总被引:1,自引:0,他引:1  
对硒的化学形态分析的现状(1991-2006)进行了评述,主要涉及的分析方法有紫外-可见分光光度法、荧光光度法、氢化物发生(HG)原子荧光光谱法、HG原子吸收光谱法、电感耦合等离子体(ICP)原子发射光谱、气相色译原子吸收光谱联用、ICP-质谱与多种分析技术联用等(引用文献45篇).  相似文献   

18.
Capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS) and electrospray (ES) or ion spray (IS) mass spectrometry (MS) are recently introduced techniques for elemental speciation. Both techniques have the potential for rapid elemental speciation with low detection limits. Examples of the use of CE-ICP-MS for elemental speciation of positive, neutral and negative species are discussed. Issues in interfacing CE and ICP-MS are considered briefly. The potential advantages and disadvantages of laminar flow in CE-ICP-MS are examined. Potential difficulties in CE-ICP-MS including loss of sample, chemical matrix effects and changes in speciation during separation are discussed. The interpretation of ES or IS-MS spectra and analysis of complex mixtures are considered. Calibration and chemical matrix effects are assessed. Potential pitfalls of interpreting bare metal ion spectra as elemental analysis are discussed. The need for fundamental understanding of the processes that control ES and IS-MS signals is examined. High conductivity samples currently present difficulties for CE-ICP-MS or ES and IS-MS.  相似文献   

19.
It is known that while many elements are considered essential to human health, many others can be toxic. However, because the intake, accumulation, transport, storage and interaction of these different metals and metalloids in nature is strongly influenced by their specific elemental form, complete characterization of the element is essential when assessing its benefits and/or risk. Consequently, interest has grown rapidly in determining oxidation state, chemical ligand association, and complex forms of a many different elements. Elemental speciation, or the analyses that lead to determining the distribution of an element’s particular chemical species in a sample, typically involves the coupling of a separation technique and an element specific detector. A large number of methods have been developed which utilize a multitude of different separation mechanisms and detection instruments. Yet, because of its versatility, robustness, sensitivity and multi-elemental capabilities, the coupling of liquid chromatography to inductively coupled plasma mass spectrometry (LC–ICP–MS) has become one of the most popular techniques for elemental speciation studies. This review focuses on the basic principles of LC–ICP–MS, its historical development and the many ways in which this technique can be applied. Different liquid chromatography separations are discussed as well as the factors that must be considered when coupling each to ICP–MS. Recent applications of LC–ICP–MS to the speciation of environmental, biological and clinical samples are also presented.  相似文献   

20.
Vanadium is recognized worldwide as the most abundant metallic constituent in petroleum. It is causing undesired side effects in the refining process, and corrosion in oil-fired power plants. Consequently, it is the most widely determined metal in petroleum and its derivatives. This paper offers a critical review of analytical methods based on atomic spectrometric techniques, particularly flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ET AAS), inductively coupled plasma optical emission spectrometry (ICP OES), inductively coupled plasma mass spectrometry (ICP-MS). In addition an overview is provided of the sample pretreatment and preparation procedures for vanadium determination in petroleum and petroleum products. Also included are the most recent studies about speciation and fractionation analysis using atomic spectrometric techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号