首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We introduce a model for random chordal graphs. We determine the thresholds for: the first edge, completeness, isolated vertices and connectivity. Like the Erdös-Rényi model, the thresholds for isolated vertices and connectivity are the same. Unlike the Erdös-Rényi model in which the threshold occurs at 1/2n logn edges, this threshold occurs atO(n 2) edges.Research supported in part by the Office of Naval Research, contract number N00014-85-K0622.  相似文献   

2.
We consider graphs and digraphs obtained by randomly generating a prescribed number of arcs incident at each vertex. We analyse their almost certain connectivity and apply these results to the expected value of random minimum length spanning trees and arborescences. We also examine the relationship between our results and certain results of Erdős and Rényi.  相似文献   

3.
Answering a question of Rosenstiehl and Tarjan, we show that every plane graph withn vertices has a Fáry embedding (i.e., straight-line embedding) on the 2n–4 byn–2 grid and provide anO(n) space,O(n logn) time algorithm to effect this embedding. The grid size is asymptotically optimal and it had been previously unknown whether one can always find a polynomial sized grid to support such an embedding. On the other hand we show that any setF, which can support a Fáry embedding of every planar graph of sizen, has cardinality at leastn+(1–o(1))n which settles a problem of Mohar.Supported in part by P. R. C. Mathematiques et Informatique.Supported in part by HSF grant 1814.Part of the work on this paper was done while this author was on sabbatical leave at école Normal Supérieure and école des Hautes études en Sciences Sociales; supported in part by NSF grant DMS-850 1947.  相似文献   

4.
On the full automorphism group of a graph   总被引:11,自引:0,他引:11  
While it is easy to characterize the graphs on which a given transitive permutation groupG acts, it is very difficult to characterize the graphsX with Aut (X)=G. We prove here that for the certain transitive permutation groups a simple necessary condition is also sufficient. As a corollary we find that, whenG is ap-group with no homomorphism ontoZ p wrZ p , almost all Cayley graphs ofG have automorphism group isomorphic toG.  相似文献   

5.
We prove a conjecture of Younger, that for every integern0 there exists an integert0 such that for every digraphG, eitherG hasn vertex-disjoint directed circuits, orG can be made acyclic by deleting at mostt vertices.Research partially supported by DONET ECHM contract CHRXCT930090.Research partially supported by DIMACS, by NSF grant DMS-9401981 and by ONR grant N00014-92-J-1965, and partially performed under a consulting agreement with Bellcore.Research partially supported by DIMACS, by Université de Paris VI, by NSF grant DMS-9303761 and by ONR grant N00014-93-1-0325, and partially performed under a consulting agreement with Bellcore.  相似文献   

6.
In this paper we show that (n) variables are needed for first-order logic with counting to identify graphs onn vertices. Thek-variable language with counting is equivalent to the (k–1)-dimensional Weisfeiler-Lehman method. We thus settle a long-standing open problem. Previously it was an open question whether or not 4 variables suffice. Our lower bound remains true over a set of graphs of color class size 4. This contrasts sharply with the fact that 3 variables suffice to identify all graphs of color class size 3, and 2 variables suffice to identify almost all graphs. Our lower bound is optimal up to multiplication by a constant becausen variables obviously suffice to identify graphs onn vertices.Research supported by NSF grant CCR-8709818.Research supported by NSF grant CCR-8805978 and Pennsylvania State University Research Initiation grant 428-45.Research supported by NSF grants DCR-8603346 and CCR-8806308.  相似文献   

7.
Dedicated to the memory of Paul Erdős We provide an elementary proof of the fact that the ramsey number of every bipartite graph H with maximum degree at most is less than . This improves an old upper bound on the ramsey number of the n-cube due to Beck, and brings us closer toward the bound conjectured by Burr and Erdős. Applying the probabilistic method we also show that for all and there exists a bipartite graph with n vertices and maximum degree at most whose ramsey number is greater than for some absolute constant c>1. Received December 1, 1999 RID="*" ID="*" Supported by NSF grant DMS-9704114 RID="**" ID="**" Supported by KBN grant 2 P03A 032 16  相似文献   

8.
In 1943, Hadwiger made the conjecture that every loopless graph not contractible to the complete graph ont+1 vertices ist-colourable. Whent3 this is easy, and whent=4, Wagner's theorem of 1937 shows the conjecture to be equivalent to the four-colour conjecture (the 4CC). However, whent5 it has remained open. Here we show that whent=5 it is also equivalent to the 4CC. More precisely, we show (without assuming the 4CC) that every minimal counterexample to Hadwiger's conjecture whent=5 is apex, that is, it consists of a planar graph with one additional vertex. Consequently, the 4CC implies Hadwiger's conjecture whent=5, because it implies that apex graphs are 5-colourable.Research partially supported by NSF grants number DMS 8903132, and DMS 9103480 respectively. Both authors were also partially supported by the DIMACS Center at Rutgers University, and the research was carried out partially under a consulting agreement with Bellcore.  相似文献   

9.
Summary We prove in this paper a law of Erdös-Rényi type for arrays of independent and identically distributed random variables. The relationships of our theorem with similar results obtained in the theory of runs and spacings are investigated. Applications include the evaluation of the rate of convergence of Erdös-Rényi maxima in limiting cases and a generalization of a Theorem of Erdös and Révész on runs.  相似文献   

10.
We show that every K 4-free graph G with n vertices can be made bipartite by deleting at most n 2/9 edges. Moreover, the only extremal graph which requires deletion of that many edges is a complete 3-partite graph with parts of size n/3. This proves an old conjecture of P. Erdős. Research supported in part by NSF CAREER award DMS-0546523, NSF grant DMS-0355497, USA-Israeli BSF grant, and by an Alfred P. Sloan fellowship.  相似文献   

11.
In this paper we describe a simple model for random graphs that have an n-fold covering map onto a fixed finite base graph. Roughly, given a base graph G and an integer n, we form a random graph by replacing each vertex of G by a set of n vertices, and joining these sets by random matchings whenever the corresponding vertices are adjacent in G. The resulting graph covers the original graph in the sense that the two are locally isomorphic. We suggest possible applications of the model, such as constructing graphs with extremal properties in a more controlled fashion than offered by the standard random models, and also "randomizing" given graphs. The main specific result that we prove here (Theorem 1) is that if is the smallest vertex degree in G, then almost all n-covers of G are -connected. In subsequent papers we will address other graph properties, such as girth, expansion and chromatic number. Received June 21, 1999/Revised November 16, 2000 RID="*" ID="*" Work supported in part by grants from the Israel Academy of Aciences and the Binational Israel-US Science Foundation.  相似文献   

12.
The aim of this paper is to show that the minimum Hadwiger number of graphs with average degreek isO(k/√logk). Specially, it follows that Hadwiger’s conjecture is true for almost all graphs withn vertices, furthermore ifk is large enough then for almost all graphs withn vertices andnk edges.  相似文献   

13.
In a graph, a chordless cycle of length greater than three is called a hole. Let be a {0, 1} vector whose entries are in one-to-one correspondence with the holes of a graphG. We characterize graphs for which, for all choices of the vector , we can pick a subsetF of the edge set ofG such that |F H| H (mod 2), for all holesH ofG and |F T| 1 for all trianglesT ofG. We call these graphsuniversally signable. The subsetF of edges is said to be labelledodd. All other edges are said to be labelledeven. Clearly graphs with no holes (triangulated graphs) are universally signable with a labelling of odd on all edges, for all choices of the vector . We give a decomposition theorem which leads to a good characterization of graphs that are universally signable. This is a generalization of a theorem due to Hajnal and Surányi [3] for triangulated graphs.This work was supported in part by NSF grants DMI-9424348 DMS-9509581 and ONR grant N00014-89-J-1063. Ajai Kapoor was also supported by a grant from Gruppo Nazionale Delle Ricerche-CNR. We also acknowledge the support of Laboratoire ARTEMIS, Université Joseph Fourier, Grenoble.  相似文献   

14.
We study the asymptotics of the p-mapping model of random mappings on [n] as n gets large, under a large class of asymptotic regimes for the underlying distribution p. We encode these random mappings in random walks which are shown to converge to a functional of the exploration process of inhomogeneous random trees, this exploration process being derived (Aldous-Miermont-Pitman 2004) from a bridge with exchangeable increments. Our setting generalizes previous results by allowing a finite number of “attracting points” to emerge.Research supported by NSF Grant DMS-0203062.Research supported by NSF Grant DMS-0071468.  相似文献   

15.
A k-uniform hypergraph is hamiltonian if for some cyclic ordering of its vertex set, every k consecutive vertices form an edge. In 1952 Dirac proved that if the minimum degree in an n-vertex graph is at least n/2 then the graph is hamiltonian. We prove an approximate version of an analogous result for uniform hypergraphs: For every K ≥ 3 and γ > 0, and for all n large enough, a sufficient condition for an n-vertex k-uniform hypergraph to be hamiltonian is that each (k − 1)-element set of vertices is contained in at least (1/2 + γ)n edges. Research supported by NSF grant DMS-0300529. Research supported by KBN grant 2P03A 015 23 and N201036 32/2546. Part of research performed at Emory University, Atlanta. Research supported by NSF grant DMS-0100784.  相似文献   

16.
For 0<1 and graphsG andH, writeGH if any -proportion of the edges ofG spans at least one copy ofH inG. As customary, writeK r for the complete graph onr vertices. We show that for every fixed real >0 there exists a constantC=C() such that almost every random graphG n,p withp=p(n)Cn –2/5 satisfiesG n,p 2/3+ K 4. The proof makes use of a variant of Szemerédi's regularity lemma for sparse graphs and is based on a certain superexponential estimate for the number of pseudo-random tripartite graphs whose triangles are not too well distributed. Related results and a general conjecture concerningH-free subgraphs of random graphs in the spirit of the Erds-Stone theorem are discussed.The first author was partially supported by FAPESP (Proc. 93/0603-1) and by CNPq (Proc. 300334/93-1 and ProTeM-CC-II Project ProComb). Part of this work was done while the second author was visiting the University of São Paulo, supported by FAPESP (Proc. 94/4276-8). The third author was partially supported by the NSF grant DMS-9401559.  相似文献   

17.
An equitable coloring of a graph is a proper vertex coloring such that the sizes of any two color classes differ by at most one. The least positive integer k for which there exists an equitable coloring of a graph G with k colors is said to be the equitable chromatic number of G and is denoted by χ=(G). The least positive integer k such that for any k′ ≥ k there exists an equitable coloring of a graph G with k′ colors is said to be the equitable chromatic threshold of G and is denoted by χ=*(G). In this paper, we investigate the asymptotic behavior of these coloring parameters in the probability space G(n,p) of random graphs. We prove that if n?1/5+? < p < 0.99 for some 0 < ?, then almost surely χ(G(n,p)) ≤ χ=(G(n,p)) = (1 + o(1))χ(G(n,p)) holds (where χ(G(n,p)) is the ordinary chromatic number of G(n,p)). We also show that there exists a constant C such that if C/n < p < 0.99, then almost surely χ(G(n,p)) ≤ χ=(G(n,p)) ≤ (2 + o(1))χ(G(n,p)). Concerning the equitable chromatic threshold, we prove that if n?(1??) < p < 0.99 for some 0 < ?, then almost surely χ(G(n,p)) ≤ χ=* (G(n,p)) ≤ (2 + o(1))χ(G(n,p)) holds, and if < p < 0.99 for some 0 < ?, then almost surely we have χ(G(n,p)) ≤ χ=*(G(n,p)) = O?(χ(G(n,p))). © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

18.
It is shown that almost all graphs are unretractive, i.e. have no endomorphisms other than their automorphisms. A more general result has already been published in [V. Koubek, V. Rödl, On the minimum order of graphs with given semigroup, J. Combin. Theory Ser. B 36 (1984) 135–155]. In the paper at hand, a different proof is presented, following an approach of P. Erdős and A. Rényi that was used in their proof [P. Erdős, A. Rényi, Asymmetric graphs, Acta Math. Acad. Sci. Hungar. 14 (1963) 295–315] that almost all graphs are asymmetric (have a trivial automorphism group). The approach is modified using an algebraically motivated reduction to idempotent endomorphisms. These take the role of the automorphisms in the proof of Erdős and Rényi. A bound of is provided for the ratio of retractive graphs among all graphs with n vertices, confirming an earlier statement by Babai [L. Babai, Automorphism groups, isomorphism, reconstruction, in: R.L. Graham, M. Grötschel, L. Lovász (Eds.), in: Handbook of Combinatorics, vol. 2, Elsevier, Amsterdam, 1995, pp. 1447–1540]. The fact that almost all graphs are unretractive and asymmetric can be summarized in the statement that almost all graphs are rigid (have a trivial endomorphism monoid), and the same bound can be obtained for corresponding ratios of nonrigid graphs.  相似文献   

19.
We characterize Pfaffian graphs in terms of their drawings in the plane. We generalize the techniques used in the proof of this characterization, and prove a theorem about the numbers of crossings in T-joins in different drawings of a fixed graph. As a corollary we give a new proof of a theorem of Kleitman on the parity of crossings in drawings of K 2j+1 and K 2j+1,2k+1. Partially supported by NSF grants DMS-0200595 and DMS-0701033.  相似文献   

20.
J. H. Kim  V. H. Vu 《Combinatorica》2006,26(6):683-708
Random regular graphs play a central role in combinatorics and theoretical computer science. In this paper, we analyze a simple algorithm introduced by Steger and Wormald [10] and prove that it produces an asymptotically uniform random regular graph in a polynomial time. Precisely, for fixed d and n with d = O(n1/3−ε), it is shown that the algorithm generates an asymptotically uniform random d-regular graph on n vertices in time O(nd2). This confirms a conjecture of Wormald. The key ingredient in the proof is a recently developed concentration inequality by the second author. The algorithm works for relatively large d in practical (quadratic) time and can be used to derive many properties of uniform random regular graphs. * Research supported in part by grant RB091G-VU from UCSD, by NSF grant DMS-0200357 and by an A. Sloan fellowship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号