首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By using a doubly passively Q-switched Nd:Gd3Ga5O12(Nd:GGG) laser with Cr4+:YAG and GaAs as saturable absorbers as pump laser, simultaneous intracavity optical parametric oscillation and stimulated Raman scattering based on a single X-cut KTiOPO4 (KTP) crystal have been realized. Under an incident diode pump power of 10.5 W, the output powers at the signal wave near 1,569 nm and the first Stokes emission near 1,094 nm were 218 and 72 mW, corresponding to the optical-to-optical conversion efficiencies of 2.08 and 0.69 %, respectively. The measured shortest pulse duration at the signal wave near 1,569 nm was 580 ps, generating a pulse peak power of 43.7 kW, while the minimum pulse duration at the first Stokes emission near 1,094 nm was 1.61 ns. By adjusting the tilt angle of the KTP crystal, up to the third Stokes scattering was also obtained.  相似文献   

2.
A KTiOAsO4 (KTA) intracavity optical parametric oscillator (IOPO) is achieved within a diode end-pumped acousto-optically Q-switched Nd:YAG laser. With a 25-mm-long X-cut KTA crystal, efficient parametric conversions to signal (1535 nm) and idler (3467 nm) waves are realized. At an incident diode power of 14.9 W, the highest output power of 1.83 W including 1.37 W of signal and 0.46 W of idler radiations are obtained at a repetition rate of 40 kHz, corresponding to a total optical-to-optical conversion efficiency of 12.3%. Rate equations model are used to simulate this system, and the theoretical results agree with the experimental ones.  相似文献   

3.
A high efficiency KTiOAsO4(KTA) intracavity optical parametric oscillator (IOPO) is demonstrated within a diode-side-pumped acousto-optically (AO) Q-switched two-rod Nd:YAG laser. With a 25-mm-long X-cut KTA crystal, efficient parametric conversions to signal (1.54 μm) and idler (3.47 μm) waves are realized. The highest output power of 15.8 W including 12.7 W signal and 3.1 W idler power is obtained at a repetition rate of 7.5 kHz and a pump power of 208 W, corresponding to an optical-to-optical conversion efficiency of up to 7.6%. The signal pulse duration is 32 ns with a peak power of 53 kW. At a repetition rate of 12.5 kHz and the pump power of 208 W, the highest idler power of 3.4 W is obtained with a peak power of 14 kW and a pulse duration of 19 ns. And the beam quality factors (M 2) of the signal and idler waves are determined to be around 2 and 20, respectively.  相似文献   

4.
A 1.8 ??m optical parametric oscillator pumped by a diode end-pumped acousto-optically Q-switched Nd:YAG is demonstrated. A 30-mm-long KTiOPO4 crystal cut with an angle of ?? = 59.4°, ?? = 0° is employed as the OPO crystal. 685 mW signal laser at 1.8 ??m is obtained at the diode pump power of 13 W and the pulse repetition rate of 25 kHz. Simultaneously, 265 mW idler emission at 2.6 ??m is obtained. The corresponded diode-to-OPO conversion efficiency is 7.3%. The pulse width of the signal and idler wave are measured to be 4.5 and 2.5 ns, respectively. This gives a peak power of 6.1 and 4.2 kW, respectively.  相似文献   

5.
We report the generation of mid-infrared pulsed radiation between 2.2 and 3 μm range using a singly-resonant optical parametric oscillator (SR-OPO) based on a 40-mm-long crystal of periodically-poled LiNbO3 (PPLN) pumped by mechanically Q-switched pulses from a Nd:YAG laser, obtained by chopping the beam inside the laser resonator over a 1–10 kHz duty cycle. An appreciable reduction in pulse width as well as the number of relaxation oscillation pulses of the Nd:YAG pump laser is observed when the frequency of the Q-switch chopper is increased up to 10 kHz. Sub-nanosecond relaxation oscillation pulses of about 170–210 ns duration are generated under the width of the idler envelope varying from 4.6 to 8.55 μs. The same behavior is observed for the signal wave. A maximum extraction efficiency of 22 % is obtained for the idler, corresponding to 785 mW of output power at 10 kHz. The tuning of the signal and idler beams were performed by temperature variation of the PPLN crystal within 100–200 °C range.  相似文献   

6.
A passively Q-switched intracavity optical parametric oscillator based on KTiOAsO4 (KTA) crystal is studied theoretically and experimentally. The rate-equation-based theoretical model is established to describe the time evolutions of the population inversion density of the laser crystal, ground-state population density of the saturable absorber, fundamental photon density, signal photon density and the idler photon density. In the experiment, a laser diode-end pumped, passively Q-switched Nd:YAG/KTA IOPO with a Cr4+:YAG crystal as the saturable absorber is realized to verify this model. The characteristics including the output power, the pulse repetition rate, the pulse width and the beam quality were investigated for this OPO. The experimental results for the output power and the repetition rate agree with the theory well. And both results show that with same pumping level the idler pulse width is shorter than the signal one.  相似文献   

7.
Low-threshold, efficient optical parametric generation at ~6100 nm is demonstrated using CdSiP2 nonlinear crystal at 1 to 10?kHz repetition rates with relatively long 500?ps pump pulses at 1064?nm. Maximum single pulse energy of 8.7?μJ and average power of 79?mW are achieved for the idler. Seeding at the signal wavelength is employed using a distributed feedback laser diode, which enables approximately tenfold narrowing of the idler bandwidth down to less than 1?nm.  相似文献   

8.
We report on a green-pumped continuous-wave singly resonant optical parametric oscillator (cw SRO) based on MgO-doped periodically poled LiNbO3. Operating the SRO at crystal temperatures between 40.0°C to 80.0°C an idler wavelength range of 1406–1451 nm can be accessed. The system provides stable single-frequency idler radiation of more than 300 mW at a pump power of 2 W while featuring a low threshold (<1.2 W). Above a pump power of 2.1 W we observe multimode operation, which is similar to the behavior reported for infrared-pumped SROs. To show the applicability of the device we demonstrate Doppler-free saturation spectroscopy of the cesium D2 line using the signal wave and frequency stabilization to a crossover resonance of the D2 transition.  相似文献   

9.
A gray-trace resistance KTP (GTR-KTP) second Stokes Raman laser intracavity driven by a diode-pumped acousto-optic Q-switched Nd:YVO4 laser was first demonstrated in this paper. With an incident pump power of 9.5 W, the intracavity GTR-KTP Raman laser, operating at the repetition rate of 20 kHz, produced the maximum average output power of 860 mW at 1129 nm. The minimum pulse width obtained in this GTR-KTP Raman laser was 10.8 ns. When the GTR-KTP was substituted with a common KTP, a lower average output power of 720 mW and longer pulse width of 15.9 ns were obtained in the common KTP Raman laser under the same pump condition and cavity setup as the GTR-KTP Raman laser. Experimental results indicated that the decreased absorption at the fundamental and Stokes wave in GTR-KTP was beneficial to improve the stimulated Raman scattering performance.  相似文献   

10.
We present in this paper a highly stable and efficient KTP-based intracavity optical parametric oscillator with a diode-end-pumped Nd:YVO4/Cr:YAG passively Q-switched laser. At the incident diode pump power of 4 W, the signal (1.57 μm) and idler (3.29 μm) average output powers up to 580 and 100 mW, respectively, have been achieved. The corresponding conversion efficiency from the input diode pump power to the output signal power is 14.5%, while that to the total OPO output (signal+idler) reaches 17%. To the best of our knowledge, these are the highest conversion efficiencies reported to date. After more than four hours of investigation, the OPO power stability better than 2% has been obtained. In addition, efficient cavity dumping of the IOPO has inevitably led to the short pulse duration (1.6 ns) and high peak power output (8.3 kW) at the signal wave. Additionally, the amplitude and repetition rate fluctuations of the signal pulses are well within 5%. PACS 42.55.Xi; 42.60.Gd; 42.60.Lh; 42.65.Yj  相似文献   

11.
We present a stable, high-power, fiber-laser-pumped, continuous-wave (cw), singly resonant optical parametric oscillator (SRO) for the mid-infrared in an output-coupled (OC) configuration, providing 17.5 W of total output power at 61% extraction efficiency. Using a single-frequency, cw Yb fiber laser at 1064 nm and a 50-mm-long MgO:PPLN crystal, through optimization of signal output coupling we generate up to 9.8 W of signal power in the near-infrared together with 7.7 W of idler power for 28.6 W of pump, while in the absence of output coupling, 8.6 W of idler power is generated for the same pump power at 30% efficiency. The SRO is tunable over 360 nm in the idler range. The deployment of signal output coupling results in a total tuning of 513 nm (120 nm of signal, 393 nm of idler) over which watt-level output power can be extracted. Through careful control of thermal effects we achieve a long-term peak-to-peak idler power stability of 5% over 14 hours near room temperature. The output beams have TEM00 spatial profile with M 2<1.28 for the idler and M 2<1.37 for the signal.  相似文献   

12.
A few‐cycle, broadband, singly‐resonant optical parametric oscillator (OPO) for the mid‐infrared based on MgO‐doped periodically‐poled LiNbO3 (MgO:PPLN), synchronously pumped by a 20‐fs Ti:sapphire laser is reported. By using crystal interaction lengths as short as 250 µm, and careful dispersion management of input pump pulses and the OPO resonator, near‐transform‐limited, few‐cycle idler pulses tunable across the mid‐infrared have been generated, with as few as 3.7 optical cycles at 2682 nm. The OPO can be continuously tuned over 2179‐3732 nm (4589‐2680 cm‐1) by cavity delay tuning, providing up to 33 mW of output power at 3723 nm. The idler spectra exhibit stable broadband profiles with bandwidths spanning over 422 nm (FWHM) recorded at 3732 nm. The effect of crystal length on spectral bandwidth and pulse duration is investigated at a fixed wavelength, confirming near‐transform‐limited idler pulses for all grating interaction lengths. By locking the repetition frequency of the pump laser to a radio‐frequency reference, and without active stabilization of the OPO cavity length, an idler power stability better than 1.6% rms over >2.75 hours is obtained when operating at maximum output power, in excellent spatial beam quality with TEM00 mode profile. Photograph shows a multigrating MgO:PPLN crystal used as a nonlinear gain medium in the few‐cycle femtosecond mid‐IR OPO. The visible light is the result of non‐phase‐matched sum‐frequency mixing between the interacting beams.  相似文献   

13.
A high repetition rate mid-infrared singly resonant optical parametric oscillator (OPO) using MgO-doped multi-grating periodically poled LiNbO3 (MgO:PPLN) is demonstrated. A 1064 nm Q-switched Nd:YVO4 laser at 10 kHz repetition rate and pulse width of 17.8 ns was used to pump the OPO. The period of the quasi-phase matched (QPM) grating in the multi-grating MgO:PPLN chip varied from 25.5 to 31.5 μm in steps of 0.5 μm. This corresponds to the generation of a signal beam from 1.37 to 1.64 μm and an idler beam from 3.0 to 4.8 μm, respectively. A maximum signal power of 250 mW and idler power of 140 mW has been obtained with an input pump beam of power 1.92 W, for a grating period of 30.5 μm. A maximum optic-optic conversion efficiency of 20% and 7.4% in the idler has been observed. It has been observed that the output power increases as the period of the grating increases.  相似文献   

14.
With a non-critically phase-matched KTA crystal, a high-power intracavity optical parametric oscillator (IOPO) driven by a diode-side-pumped acousto-optically Q-switched Nd:YAG laser has been realized. The maximum average output power of 13.6 W at the signal wavelength of 1534 nm and 3 W at the idler wavelength of 3472.7 nm were obtained with the repetition rate of 18 kHz, giving the optical-optical conversion efficiency of about 5.7% from diode-power at 808 nm to OPO signal output, which was the highest conversion efficiency for intracavity KTA OPO with diode-side-pumping configurations to our best knowledge. At the highest output power of 13.6 W, the signal pulse duration of 5.46 ns was obtained, corresponding to the single pulse energy of 756 μJ and peak power of 138 kW, respectively.  相似文献   

15.
Shuyan Diao 《Laser Physics》2012,22(12):1793-1796
The experimental results of a high efficiency infrared laser are demonstrated on a quasi phase matched optical parametric generator in PPMgLN (5% MgO doping) pumped by a 1064 nm Nd:YAG laser. A broad continuous signal spectrum 1.56?C1.67 ??m are obtained by tuning the crystal temperature from 20°C to 200°C. When the average pump power is 1.82 W with about 70 ns pulse duration operating at a repetition rate of 10 kHz, the maximum total output power of the PPMgLN OPG is about 323.58 mW consisting of 210 mW of 1.639 ??m signal radiation and 113.58 mW of 3.02 ??m idler radiation.  相似文献   

16.
A continuous wave optical parametric oscillator, generating up to 300 mW idler output in the 3–4 μm wavelength region, and pumped by a fiber-amplified DBR diode laser is used for trace gas detection by means of quartz-enhanced photoacoustic spectroscopy (QEPAS). Mode-hop-free tuning of the OPO output over 5.2 cm-1 and continuous spectral coverage exceeding 16.5 cm-1 were achieved via electronic pump source tuning alone. Online monitoring of the idler wavelength, with feedback to the DBR diode laser, provided an automated closed-loop control allowing arbitrary idler wavelength selection within the pump tuning range and locking of the idler wavelength with a stability of 1.7×10-3 cm-1 over at least 30 min. Using this approach, we locked the idler wavelength at an ethane absorption peak and obtained QEPAS data to verify the linear response of the QEPAS signal at different ethane concentrations (100 ppbv-20 ppmv) and different power levels. The detection limit for ethane was determined to be 13 ppbv (20 s averaging), corresponding to a normalized noise equivalent absorption coefficient of 4.4×10-7 cm-1  W/Hz1/2. PACS 42.55.Wd; 42.65.Yj; 42.62.Fi  相似文献   

17.
4 (KTP) optical parametric oscillators (OPOs) with pump and idler resonant cavities. With a linear two-mirror cavity the pump power at threshold was 70 mW. The single-frequency signal and idler output wavelengths were tuned in the range of 1025 to 1040 nm and 1250 to 1380 nm by tuning the dye laser in the range of 565 to 588 nm. With a dual three-mirror cavity the threshold was 135 mW. Pumped by 500 mW of 578 nm radiation the 1040 nm single-frequency signal wave output power was 84 mW. Power and frequency stable operation with a spectral bandwidth of less than 9 MHz was obtained by piezo-electrically locking the length of the pump resonant cavity to the dye laser wavelength. Similar performance was achieved by placing the idler resonant OPO inside the resonator of the dye laser. With this system power stable and single-frequency operation was achieved with a spectral bandwidth of less than 11 MHz for the idler wave. Received: 3 February 1998/Revised version: 9 March 1998  相似文献   

18.
Q-switching and Q-switched mode-locked Yb:Y2Ca3B4O12 lasers with an acousto-optic switch are demonstrated. In the Q-switching case, an average output power of 530 mW is obtained at the pulse repetition rate of 10.0 kHz under an absorbed pump power of 6.1 W. The minimum pulse width is 79 ns at the repetition rate of 1.7 kHz. The pulse energy and peak energy are calculated to be 231 μJ and 2.03 kW, respectively. In the Q-switched mode-locking case, the average output power of 64 mW with a mode-locked pulse repetition rate of 118 MHz and Q-switched pulse energy of 48 μJ is generated under the absorbed pump power of 6.1 W.  相似文献   

19.
张丽梦  胡明列  顾澄琳  范锦涛  王清月 《物理学报》2014,63(5):54205-054205
本文利用高重复频率,高平均功率大模场面积飞秒光纤激光器作为同步抽运源,抽运以多周期极化掺氧化镁铌酸锂为非线性晶体的单共振光学参量振荡器,获得了高功率可调谐红光至中红外光,信号光调谐范围为1450—2200 nm,闲频光调谐范围为2250—4000 nm,在2 W的抽运功率下,信号光输出波长为1502 nm时获得最大输出功率374 mW,转换效率为18.7%,脉冲宽度为144 fs,此时中红外输出中心波长为3.4μm,平均功率为166 mW.再利用BBO晶体对信号光进行腔内和频,获得和频光输出波长调谐范围为610—668 nm,在4.1 W抽运的情况下,最高平均功率为615 nm处的694 mW,转换效率达16.9%.  相似文献   

20.
We present detailed investigations of a femtosecond green-pumped optical parametric oscillator (OPO) based on lithium triborate. As pump source, a frequency-doubled Yb-fiber laser-amplifier system is used. The OPO generates signal pulses tunable over a spectral range from 780 to 940 nm and idler pulses tunable from 1630 to 1190 nm. More than 250 mW are generated in the signal beam and more than 300 mW in the idler beam. Without dispersion compensation chirped signal pulses with a pulse duration between 100 and 250 fs are measured. Using this system for coherent anti-Stokes Raman scattering spectroscopy, vibrational resonances between 1110 and 6760 cm−1 can be excited. Due to the chirped pulses, a spectral resolution of 100 cm−1 is achieved, which is 2.5 times higher compared to an excitation with time-bandwidth limited pulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号