首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 553 毫秒
1.
Let G=(V,E) be a graph. A set SV is a total restrained dominating set if every vertex is adjacent to a vertex in S and every vertex of V-S is adjacent to a vertex in V-S. The total restrained domination number of G, denoted by γtr(G), is the smallest cardinality of a total restrained dominating set of G. We show that if T is a tree of order n, then . Moreover, we show that if T is a tree of order , then . We then constructively characterize the extremal trees T of order n achieving these lower bounds.  相似文献   

2.
In this paper, we continue the study of total restrained domination in graphs, a concept introduced by Telle and Proskurowksi (Algorithms for vertex partitioning problems on partial k-trees, SIAM J. Discrete Math. 10 (1997) 529-550) as a vertex partitioning problem. A set S of vertices in a graph G=(V,E) is a total restrained dominating set of G if every vertex is adjacent to a vertex in S and every vertex of V?S is adjacent to a vertex in V?S. The minimum cardinality of a total restrained dominating set of G is the total restrained domination number of G, denoted by γtr(G). Let G be a connected graph of order n with minimum degree at least 2 and with maximum degree Δ where Δ?n-2. We prove that if n?4, then and this bound is sharp. If we restrict G to a bipartite graph with Δ?3, then we improve this bound by showing that and that this bound is sharp.  相似文献   

3.
4.
Let G=(V,E) be a graph. A set SV is a restrained dominating set if every vertex in VS is adjacent to a vertex in S and to a vertex in VS. The restrained domination number of G, denoted γr(G), is the smallest cardinality of a restrained dominating set of G. We will show that if G is a connected graph of order n and minimum degree δ and not isomorphic to one of nine exceptional graphs, then .  相似文献   

5.
Let G=(V,E) be a graph. A subset SV is a dominating set of G, if every vertex uVS is dominated by some vertex vS. The domination number, denoted by γ(G), is the minimum cardinality of a dominating set. For the generalized Petersen graph G(n), Behzad et al. [A. Behzad, M. Behzad, C.E. Praeger, On the domination number of the generalized Petersen graphs, Discrete Mathematics 308 (2008) 603-610] proved that and conjectured that the upper bound is the exact domination number. In this paper we prove this conjecture.  相似文献   

6.
A dominating set of a graph G=(V,E) is a subset SV such that every vertex not in S is adjacent to at least one vertex of S. The domination number of G is the cardinality of a smallest dominating set. The global domination number, γg(G), is the cardinality of a smallest set S that is simultaneously a dominating set of both G and its complement . Graphs for which γg(Ge)>γg(G) for all edges eE are characterized, as are graphs for which γg(Ge)<γg(G) for all edges eE whenever is disconnected. Progress is reported in the latter case when is connected.  相似文献   

7.
A set S of vertices of a graph G=(V,E) with no isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination numberγt(G) is the minimum cardinality of a total dominating set of G. The total domination subdivision numbersdγt(G) is the minimum number of edges that must be subdivided in order to increase the total domination number. We consider graphs of order n?4, minimum degree δ and maximum degree Δ. We prove that if each component of G and has order at least 3 and , then and if each component of G and has order at least 2 and at least one component of G and has order at least 3, then . We also give a result on stronger than a conjecture by Harary and Haynes.  相似文献   

8.
A dominating set of vertices S of a graph G is connected if the subgraph G[S] is connected. Let γc(G) denote the size of any smallest connected dominating set in G. A graph G is k-γ-connected-critical if γc(G)=k, but if any edge is added to G, then γc(G+e)?k-1. This is a variation on the earlier concept of criticality of edge addition with respect to ordinary domination where a graph G was defined to be k-critical if the domination number of G is k, but if any edge is added to G, the domination number falls to k-1.A graph G is factor-critical if G-v has a perfect matching for every vertex vV(G), bicritical if G-u-v has a perfect matching for every pair of distinct vertices u,vV(G) or, more generally, k-factor-critical if, for every set SV(G) with |S|=k, the graph G-S contains a perfect matching. In two previous papers [N. Ananchuen, M.D. Plummer, Matching properties in domination critical graphs, Discrete Math. 277 (2004) 1-13; N. Ananchuen, M.D. Plummer, 3-factor-criticality in domination critical graphs, Discrete Math. 2007, to appear [3].] on ordinary (i.e., not necessarily connected) domination, the first and third authors showed that under certain assumptions regarding connectivity and minimum degree, a critical graph G with (ordinary) domination number 3 will be factor-critical (if |V(G)| is odd), bicritical (if |V(G)| is even) or 3-factor-critical (again if |V(G)| is odd). Analogous theorems for connected domination are presented here. Although domination and connected domination are similar in some ways, we will point out some interesting differences between our new results for the case of connected domination and the results in [N. Ananchuen, M.D. Plummer, Matching properties in domination critical graphs, Discrete Math. 277 (2004) 1-13; N. Ananchuen, M.D. Plummer, 3-factor-criticality in domination critical graphs, Discrete Math. 2007, to appear [3].].  相似文献   

9.
In this paper, we study a generalization of the paired domination number. Let G=(V,E) be a graph without an isolated vertex. A set DV(G) is a k-distance paired dominating set of G if D is a k-distance dominating set of G and the induced subgraph 〈D〉 has a perfect matching. The k-distance paired domination number is the cardinality of a smallest k-distance paired dominating set of G. We investigate properties of the k-distance paired domination number of a graph. We also give an upper bound and a lower bound on the k-distance paired domination number of a non-trivial tree T in terms of the size of T and the number of leaves in T and we also characterize the extremal trees.  相似文献   

10.
Let G=(V,E) be a graph. A set SV is a restrained dominating set (RDS) if every vertex not in S is adjacent to a vertex in S and to a vertex in V?S. The restrained domination number of G, denoted by γr(G), is the minimum cardinality of an RDS of G. A set SV is a total dominating set (TDS) if every vertex in V is adjacent to a vertex in S. The total domination number of a graph G without isolated vertices, denoted by γt(G), is the minimum cardinality of a TDS of G.Let δ and Δ denote the minimum and maximum degrees, respectively, in G. If G is a graph of order n with δ?2, then it is shown that γr(G)?n-Δ, and we characterize the connected graphs with δ?2 achieving this bound that have no 3-cycle as well as those connected graphs with δ?2 that have neither a 3-cycle nor a 5-cycle. Cockayne et al. [Total domination in graphs, Networks 10 (1980) 211-219] showed that if G is a connected graph of order n?3 and Δ?n-2, then γt(G)?n-Δ. We further characterize the connected graphs G of order n?3 with Δ?n-2 that have no 3-cycle and achieve γt(G)=n-Δ.  相似文献   

11.
On total restrained domination in graphs   总被引:2,自引:0,他引:2  
In this paper we initiate the study of total restrained domination in graphs. Let G = (V,E) be a graph. A total restrained dominating set is a set S V where every vertex in V - S is adjacent to a vertex in S as well as to another vertex in V - S, and every vertex in S is adjacent to another vertex in S. The total restrained domination number of G, denoted by r t (G), is the smallest cardinality of a total restrained dominating set of G. First, some exact values and sharp bounds for r t (G) are given in Section 2. Then the Nordhaus-Gaddum-type results for total restrained domination number are established in Section 3. Finally, we show that the decision problem for r t (G) is NP-complete even for bipartite and chordal graphs in Section 4.This work was supported by National Natural Sciences Foundation of China (19871036).  相似文献   

12.
13.
A set S of vertices of a connected graph G is a doubly connected dominating set if every vertex not in S is adjacent to some vertex in S and the subgraphs induced by S and VS are connected. The doubly connected domination numberγcc(G) is the minimum size of such a set. We prove that when G and are both connected of order n, and we describe the two infinite families of extremal graphs achieving the bound.  相似文献   

14.
Huajun Tang 《Discrete Mathematics》2008,308(15):3416-3419
Let G=(V,E) be a graph. A signed dominating function on G is a function f:V→{-1,1} such that for each vV, where N[v] is the closed neighborhood of v. The weight of a signed dominating function f is . A signed dominating function f is minimal if there exists no signed dominating function g such that gf and g(v)?f(v) for each vV. The upper signed domination number of a graph G, denoted by Γs(G), equals the maximum weight of a minimal signed dominating function of G. In this paper, we establish an tight upper bound for Γs(G) in terms of minimum degree and maximum degree. Our result is a generalization of those for regular graphs and nearly regular graphs obtained in [O. Favaron, Signed domination in regular graphs, Discrete Math. 158 (1996) 287-293] and [C.X. Wang, J.Z. Mao, Some more remarks on domination in cubic graphs, Discrete Math. 237 (2001) 193-197], respectively.  相似文献   

15.
A Roman domination function on a graph G=(V(G),E(G)) is a function f:V(G)→{0,1,2} satisfying the condition that every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=2. The weight of a Roman dominating function is the value f(V(G))=∑uV(G)f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. Cockayne et al. [E. J. Cockayne et al. Roman domination in graphs, Discrete Mathematics 278 (2004) 11-22] showed that γ(G)≤γR(G)≤2γ(G) and defined a graph G to be Roman if γR(G)=2γ(G). In this article, the authors gave several classes of Roman graphs: P3k,P3k+2,C3k,C3k+2 for k≥1, Km,n for min{m,n}≠2, and any graph G with γ(G)=1; In this paper, we research on regular Roman graphs and prove that: (1) the circulant graphs and , n⁄≡1 (mod (2k+1)), (n≠2k) are Roman graphs, (2) the generalized Petersen graphs P(n,2k+1)( (mod 4) and ), P(n,1) (n⁄≡2 (mod 4)), P(n,3) ( (mod 4)) and P(11,3) are Roman graphs, and (3) the Cartesian product graphs are Roman graphs.  相似文献   

16.
Let G=(V,E) be a connected graph. A dominating set S of G is a weakly connected dominating set of G if the subgraph (V,E∩(S×V)) of G with vertex set V that consists of all edges of G incident with at least one vertex of S is connected. The minimum cardinality of a weakly connected dominating set of G is the weakly connected domination number, denoted . A set S of vertices in G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number γt(G) of G. In this paper, we show that . Properties of connected graphs that achieve equality in these bounds are presented. We characterize bipartite graphs as well as the family of graphs of large girth that achieve equality in the lower bound, and we characterize the trees achieving equality in the upper bound. The number of edges in a maximum matching of G is called the matching number of G, denoted α(G). We also establish that , and show that for every tree T.  相似文献   

17.
A Roman dominating function of a graph G is a labeling f:V(G)?{0,1,2} such that every vertex with label 0 has a neighbor with label 2. The Roman domination number γR(G) of G is the minimum of ∑vV(G)f(v) over such functions. A Roman dominating function of G of weight γR(G) is called a γR(G)-function. A Roman dominating function f:V?{0,1,2} can be represented by the ordered partition (V0,V1,V2) of V, where Vi={vVf(v)=i}. Cockayne et al. [E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi, S.T. Hedetniemi, On Roman domination in graphs, Discrete Math. 278 (2004) 11-22] posed the following question: What can we say about the minimum and maximum values of |V0|,|V1|,|V2| for a γR-function f=(V0,V1,V2) of a graph G? In this paper we first show that for any connected graph G of order n≥3, , where γ(G) is the domination number of G. Also we prove that for any γR-function f=(V0,V1,V2) of a connected graph G of order n≥3, , and .  相似文献   

18.
For a given connected graph G=(V,E), a set DtrV(G) is a total restrained dominating set if it is dominating and both 〈Dtr〉 and 〈V(G)-Dtr〉 do not contain isolate vertices. The cardinality of the minimum total restrained dominating set in G is the total restrained domination number and is denoted by γtr(G). In this paper we characterize the trees with equal total and total restrained dominating numbers and give a lower bound on the total restrained dominating number of a tree T in terms of its order and the number of leaves of T.  相似文献   

19.
A function f:V(G)→{+1,0,-1} defined on the vertices of a graph G is a minus total dominating function if the sum of its function values over any open neighborhood is at least 1. The minus total domination number of G is the minimum weight of a minus total dominating function on G. By simply changing “{+1,0,-1}” in the above definition to “{+1,-1}”, we can define the signed total dominating function and the signed total domination number of G. In this paper we present a sharp lower bound on the signed total domination number for a k-partite graph, which results in a short proof of a result due to Kang et al. on the minus total domination number for a k-partite graph. We also give sharp lower bounds on and for triangle-free graphs and characterize the extremal graphs achieving these bounds.  相似文献   

20.
On signed cycle domination in graphs   总被引:2,自引:0,他引:2  
Baogen Xu 《Discrete Mathematics》2009,309(4):1007-1387
Let G=(V,E) be a graph, a function f:E→{−1,1} is said to be an signed cycle dominating function (SCDF) of G if ∑eE(C)f(e)≥1 holds for any induced cycle C of G. The signed cycle domination number of G is defined as is an SCDF of G}. In this paper, we obtain bounds on , characterize all connected graphs G with , and determine the exact value of for some special classes of graphs G. In addition, we pose some open problems and conjectures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号