首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Two tribranched chromophores,1,3,5-triazine as electron deficient core,9,9-dimethylfluorene asπ-conjugated bridge, diphenylamino(4a) and naphthylamino(4b) as electron-donating end-groups,were successfully prepared via Buchwald-Hartwig coupling reaction.Their linear photophysical and two-photon absorption(TPA) properties were investigated by absorption, fluorescence and nonlinear transmission method,respectively.The absorption cut-offs of the chromophores are below 550 nm and both chromophores have strong fluorescence emission.The compound 4a(206.3 GM) exhibits larger TPA cross-section than 4b (57.8 GM) in the femtosecond regime at 800 nm.  相似文献   

2.
应用密度泛函理论(DFT)和半经验的ZINDO方法对二吡唑铝化合物的单、双光子吸收(OPA、TPA)性质进行了研究.结果表明,铝氮烷杂环化合物具有好的双光子吸收性质,其双光子最大吸收截面值(δmax)可达到2860.1 GM(1 GM=10-50 cm4·s·photon-1).在中心、共轭桥和末端引入强的吸电子基团可调谐单、双光子吸收光谱,实现在不同波长范围的双光子吸收;利用三态公式分析了分子的双光子吸收截面变化的内在原因;铝氮烷杂环化合物与其相应的硼化合物相比,表现出类似的单、双光子吸收性质,但一定程度上可增大双光子吸收截面.  相似文献   

3.
Quadrupolar-type substitution of pi-conjugated chromophores with donor and acceptor groups has been shown to increase their two-photon absorption (TPA) response by up to two orders of magnitude. Here, we apply highly correlated quantum-chemical calculations to evaluate the impact of the nature of conjugated bridge and the charge-transfer distance on that enhancement. We compare chromophores with phenylenevinylene-, thienylenevinylene-, polyene-, and indenofluorene-type backbones substituted by dimethylamino and cyano groups. In all compounds, we find a strongly TPA-active A(g) state (either 2A(g) or 3A(g)) in the low-energy region, as well as a higher lying TPA-active state (mA(g)) at close to twice the energy of the lowest lying one-photon allowed state; the smaller energy detuning in the mA(g) states results in very large TPA cross sections delta. We also investigate the influence of the degree of ground-state polarization on TPA. Independent of the nature of the backbone and the donor-acceptor separation, delta displays the same qualitative evolution with a maximum before the cyanine-like limit; the highest TPA cross sections are calculated for distirylbenzene- and polyene-based systems.  相似文献   

4.
A series of new one, two, and three-branched two-photon absorption triazine derivatives with a π-bond and a σ-electron pair as a bridge have been synthesized and their photophysical properties have been systematically investigated. These chromophores showed obvious solvatochromic effects, i.e., significant bathochromic shifting of the emission spectra and larger Stokes shifts were observed in more polar solvents mainly due to intra-molecular charge transfer (ICT). The two-photon absorption (2PA) cross-section values were determined by the two-photon excited fluorescence (TPEF) measurements in DMF. This result further proved that a σ-electron pair as a bridge is an efficient way to transfer charge as well as a π bridge, and that their 2PA cross-section values (δ) increase with increasing branch number.  相似文献   

5.
在哌啶和醋酸催化下,1,8-二甲氧基-4,5-二甲酰基-9,10-二氢蒽和异佛尔酮巴比妥酸衍生物经Knoevenagel缩合合成了具有NLO性质的发色团化合物。在这些发色团中,环锁定的三烯和9,10-二氢蒽用作共轭桥,巴比妥酸和甲氧其分别作为吸电子和给电子基, 组成非共轭的两个D-π-A单位。溶剂变色法和紫外光谱研究证实它们比相应的参考物有较大的NLO活性并能保持与参考化合物相同的透光性。  相似文献   

6.
The linear and nonlinear optical properties of two thiophene-based cyclic molecules have been investigated. These molecules represent nanometer sized cavities which may be useful for novel photonic devices. By virtue of long-range interactions, these chromophores serve as novel architectures for enhanced two-photon absorption (TPA) properties. Measurements of the different size ring structures showed a 550% increase in the TPA cross-section for the larger macrocycle. Electronic structure calculations have suggested an increase in coupling of the excited states in these systems as the ring size is increased. Measurements of the ultrafast transient absorption and fluorescence were carried out with these systems in order to probe the interaction between the chromophores. The results of the transient decays as well as fluorescence anisotropy decay times gives stronger proof to the suggestion of delocalized states in the cyclic macrocycles. These results provide information regarding the optical properties of these novel systems useful for potential applications in photonics.  相似文献   

7.
Parallel alignment of dipolar electron‐donor–π‐bridge‐electron‐acceptor entities can strongly enhance their nonlinear optical properties. This favorable arrangement can be in principle achieved by linking these units covalently or through metal coordination. Four dipolar single‐strand chromophores decorated with a 5‐electron‐donor–5′‐electron‐acceptor‐modified 2,2′‐bipyridine functionality were synthesized. For two of these chromophores triple‐stranded dendritic structures were successfully formed. All of the compounds were characterized with respect to their linear and nonlinear optical properties. For the aldehyde derivatives an enhancement of the first hyperpolarizability of 4.5 rather than 3 was obtained when going from single to triple strands. Theoretical calculations with density functional theory suggest that interstrand transitions contribute to the optical properties of the dendritic structures.  相似文献   

8.
王钰  张立鹏  赵榆霞 《化学通报》2019,82(7):612-617
设计合成了一系列基于芳香酮的具有分子内扭曲态电荷转移(TICT)特性的化合物,通过线性光物理性质与双光子吸收性质的表征,研究了分子结构中不同共轭基团和不同取代基位置对化合物光谱性能的影响,同时通过溶剂效应研究了化合物的分子内电荷转移性质。结合理论计算结果表明分子的共轭骨架和取代基的位置都能显著影响分子内电荷转移特征。其中芴酮系列的化合物表现出了较强的双光子吸收与聚集诱导荧光增强效应,在生物荧光成像领域有着潜在的应用价值。  相似文献   

9.
采用密度泛函理论(DFT)方法对卟啉-碳硼烷-硼亚甲基二吡咯(BODIPY)三元化合物的几何结构、 吸收光谱及二阶非线性光学(NLO)特性进行计算分析. 结果表明, V型化合物的静态第一超极化率(βtot)大于相应直线型化合物, 且延长共轭链可提高体系的βtot. 分析体系的电子密度差分图得出, 化合物氧化还原态的电荷转移方式与本征态相比发生了改变, 从而使其二阶NLO性质发生明显变化. 含频第一超极化率计算结果表明, 在一定范围内频率对化合物有较小的色散效应. 因此, 通过延长二维化合物的共轭链及氧化还原反应, 可以有效调控其二阶NLO响应.  相似文献   

10.
In order to better understand the nature of intramolecular charge and energy transfer in multibranched molecules, we have synthesized and studied the photophysical properties of a monomer quadrupolar chromophore with donor-acceptor-donor (D-A-D) electronic push-pull structure, together with its V-shaped dimer and star-shaped trimers. The comparison of steady-state absorption spectra and fluorescence excitation anisotropy spectra of these chromophores show evidence of weak interaction (such as charge and energy transfer) among the branches. Moreover, similar fluorescence and solvation behavior of monomer and branched chromophores (dimer and trimer) implies that the interaction among the branches is not strong enough to make a significant distinction between these molecules, due to the weak interaction and intrinsic structural disorder in branched molecules. Furthermore, the interaction between the branches can be enhanced by inserting π bridge spacers (-C═C- or -C≡C-) between the core donor and the acceptor. This improvement leads to a remarkable enhancement of two-photon cross-sections, indicating that the interbranch interaction results in the amplification of transition dipole moments between ground states and excited states. The interpretations of the observed photophysical properties are further supported by theoretical investigation, which reveal that the changes of the transition dipole moments of the branched quadrupolar chromophores play a critical role in observed the two-photon absorption (2PA) cross-section for an intramolecular charge transfer (ICT) state interaction in the multibranched quadrupolar chromophores.  相似文献   

11.
A combined experimental and theoretical study is conducted on a series of model compounds in order to assess the combined role of branching and charge symmetry on absorption, photoluminescence, and two-photon absorption (TPA) properties. The main issue of this study is to examine how branching of quadrupolar chomophores can lead to different consequences as compared to branching of dipolar chromophores. Hence, three structurally related pi-conjugated quadrupolar chromophores symmetrically substituted with donor end groups and one branched structure built from the assembly of three quadrupolar branches via a common donor moiety are used as model compounds. Their photophysical properties are studied using UV-vis spectroscopy, and the TPA spectra are determined through two-photon excited fluorescence experiments using femtosecond pulses in the 500-1000 nm range. Experimental studies are complemented by theoretical calculations. The applied theoretical methodology is based on time-dependent density functional theory, the Frenkel exciton model, and analysis in terms of the natural transition orbitals of relevant electronic states. Theory reveals that a symmetrical intramolecular charge transfer from the terminal donating groups to the middle of the molecule takes place in all quadrupolar chromophores upon photoexcitation. In contrast, branching via a central electron-donating triphenylamine moiety breaks the quadrupolar symmetry of the branches. Consequently, all Frank-Condon excited states have significant asymmetric multidimensional charge-transfer character upon excitation. Subsequent vibrational relaxation of the branched chromophore in the excited state leads to a localization of the excitation and fluorescence stemming from a single branch. As opposed to what was earlier observed when dipolar chromophores are branched via the same common electron-donating moiety, we find only a slight enhancement of the maximum TPA response of the branched compound with respect to an additive contribution of its quadrupolar branches. In contrast, substantial modifications of the spectral shape are observed. This is attributed to the subtle interplay of interbranch electronic coupling and asymmetry caused by branching.  相似文献   

12.
Four 1,8‐naphthalimide hydrazone molecules with different electron‐donating groups have been applied in the study of linear and nonlinear optical (NLO) properties. These compounds showed strong green emission in solution. Their NLO properties such as two‐photon absorption (TPA) behavior with femtosecond laser pulses ca. 800 nm and excited‐state absorption (ESA) behavior with nanosecond laser pulses at 532 nm were investigated. Compound 4 presented the largest two‐photon cross section (550 GM) among them due to two factors: the conjugated length of compound 4 is the longest and the electron‐donating ability of compound 4 is the strongest. Different from TPA behavior, compound 2 showed the best nonlinear absorption properties at 532 nm and its nonlinear absorption coefficient and third‐order nonlinear optical susceptibilities χ (3) were up to 1.41×10?10 MKS and 4.65×10?12 esu, respectively. Through the modification of the structure, the nonlinear optical properties of these compounds at different wavelengths (532 and 800 nm) were well tuned. The great broad‐band nonlinear optical properties indicate hydrazones are good candidates for organic nonlinear optical absorption materials.  相似文献   

13.
We report remarkable multiphoton absorption properties of DNA intercalating ruthenium complexes: (1) [Ru(phen)(2)dppz](2+); (2) [(11,11'-bidppz)(phen)(4)Ru(2)](4+); (3) [11,11'-bipb(phen)(4)Ru(2)](4+). Two-photon spectra in the range from 460 to 1100 nm were measured using the Z-scan technique. In particular, complex 2 was found to exhibit very strong two- and three-photon absorption properties, which could be an effect of symmetric charge transfer from the ends towards the middle of the conjugated dimeric orbital system. We propose that these molecules could provide a new generation of DNA binding nonlinear chromophores for wide applications in biology and material science. The combination of a large two-photon cross section and strong luminescence quantum yields for the molecules when intercalated makes the compounds uniquely bright and photo-stable probes for two-photon luminescence imaging and also promising as enhanced photosensitizers in two-photon sensitizing applications.  相似文献   

14.
A comprehensive photophysical study of the linear and nonlinear absorption properties has been carried out on two series of two-photon absorbing dyes to gain insight into how structure-property relationships influence observed nonlinear absorption. The materials studied consist of an electron accepting benzothiazole group connected to an electron donating diphenylamine via a fluorene bridging group. Two series differ from each other by the addition of one phenyl group and for each series one-arm (dipolar, AF240 and AF270), two-arm (quadrupolar, AF287 and AF295), and three-arm (octupolar, AF350 and AF380) versions were studied. Overall the AF240 series exhibits higher intrinsic two-photon absorption (TPA) cross-sections than the AF270 series as well as enhanced nanosecond nonlinear absorption, with an increase with number of branches. The enhanced nanosecond nonlinearity is understood by taking into account the contribution from the singlet and triplet excited states and was verified by a two-photon assisted excited-state absorption model that satisfactorily predicts the nonlinear absorption of the chromophores.  相似文献   

15.
To investigate the effect of branching on linear and nonlinear optical properties, a specific series of chromophores, epitome of (multi)branched dipoles, has been thoroughly explored by a combined theoretical and experimental approach. Excited-state structure calculations based on quantum-chemical techniques (time-dependent density functional theory) as well as a Frenkel exciton model nicely complement experimental photoluminescence and one- and two-photon absorption findings and contribute to their interpretation. This allowed us to get a deep insight into the nature of fundamental excited-state dynamics and the nonlinear optical (NLO) response involved. Both experiment and theory reveal that a multidimensional intramolecular charge transfer takes place from the donating moiety to the periphery of the branched molecules upon excitation, while fluorescence stems from an excited state localized on one of the dipolar branches. Branching is also observed to lead to cooperative enhancement of two-photon absorption (TPA) while maintaining high fluorescence quantum yield, thanks to localization of the emitting state. The comparison between results obtained in the Frenkel exciton scheme and ab initio results suggests the coherent coupling between branches as one of the possible mechanisms for the observed enhancement. New strategies for the rational design of NLO molecular assemblies are thus inferred on the basis of the acquired insights.  相似文献   

16.
本文以二苯乙烯和香豆素为共轭桥,二乙氨基为电子给体,羰基为电子受体,合成了一个具有D-π1-A-π2-D结构的香豆素酮类双光子染料C3.用紫外-可见光谱、荧光光谱研究了该化合物的光物理性质.发现在光作用下C3很容易发生分子内电荷转移,进而转变为扭曲的分子内电荷转移,产生很大的偶极矩变化.以飞秒脉冲激光为激发光源,用上转换荧光法测定了其双光子吸收截面.在激发波长为850 nm时,新化合物的双光子吸收截面值达1292 GM,比同系列香豆素酮衍生物C1、C2的双光子吸收截面值高一到两个数量级.  相似文献   

17.
Two-photon absorption processes were investigated in electropolymerized Fe(III), Mn(III), and Co(II) 5,10,15,20-tetrakis-(4-hydroxytetraphenyl)porphyrin films. Degenerate four wave mixing (DFWM) spectroscopy with 100 fs pulses in the near-IR spectral region was used. Metalloporphyrins with strong charge transfer (CT) transitions in the linear absorption spectra also show enhanced two-photon absorption. (Metalloporphyrin two-photon absorption cross section, delta, increases >10 times over that for the metal free porphyrin.) This effect was attributed to a two-photon induced charge transfer between the metal ion's d orbitals and the pi-system of the porphyrin. Correlation of one- and two-photon absorption properties of transition metal porphyrins suggests a new and simple approach to improve organic materials for photonic applications.  相似文献   

18.
Three thiophenevinyl substituted one-, two-, and three-branched truxene π-conjugated compounds TS1, TS2 and TS3 have been prepared using a Heck reaction. Their linear absorption, single- and two-photon excited fluorescence were examined. The three analogues emit blue fluorescence at 420 nm. The number of branches has no influence on the position of the absorption maxima of the charge transfer band and fluorescence emitting maxima. However, the molar extinction coefficients of charge transfer band increase almost linearly with the number of branches. The two-photon absorption cross-section of the octupolar three-branched compound TS3 is several times that of the two-branched compound TS2 and one-branched compound TS1.  相似文献   

19.
合成两种新颖的含二茂铁基团的查尔酮衍生物:1-二茂铁基-3-(4-叔丁基苯基)丙烯酮(a)和1-二茂铁基-3-联苯基丙烯酮(b),经1H NMR、13C NMR、HR-MS对其结构进行了表征;测定了该两化合物的热力学性质;采用量子化学方法计算了它们的分子轨道能量和极化率,给出了轨道电子云图;采用紫外-可见吸收光谱和Z-扫描技术测定了其线性和非线性光学性质。结果表明:与原料相比,化合物a和b的紫外吸收明显增加,且b的吸收波长更长;化合物a和b均存在分子内电荷转移现象,表现出超快三阶非线性光学响应。  相似文献   

20.
The effect of vibrational structure on the frequency dependence of the first molecular hyperpolarizability of two thiophene-based charge-transfer chromophores is investigated. A time domain formulation is used to express the polarizability. The new expression includes the solvent-induced inhomogeneous distribution of electronic transition frequencies as well as the effect of the motion of solvent molecules that modulates the vibrational and electronic transition frequencies of the nonlinear optical molecule on which the first molecular hyperpolarizability depends. Resonance Raman scattering and one-photon absorption spectra of the chromophores are measured. By simultaneously fitting the experimental one-photon absorption spectrum and Raman cross sections of vibrational lines derived from resonance Raman scattering to a theoretical model, important parameters needed for the calculation of the first molecular hyperpolarizability are obtained. The first molecular hyperpolarizability is calculated as a function of frequency covering both nonresonance and two-photon resonance regions. The calculated result is compared with the measured hyperpolarizability as a function of frequency of the excitation laser. The resonance Raman-based analysis is shown to account reasonably well for the dispersion of the hyperpolarizability of the two charge transfer chromophores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号