首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
UV–visible, infrared and Raman spectra, together with thermal properties, were measured for glasses from the system Bi2O3–B2O3–V2O5 before and after successive gamma irradiations. The UV–visible spectrum of the undoped glass before irradiation reveals five UV bands at 210, 275, 310, 350 nm, an intense band at 380 nm and a visible band at 420 nm due to the possible combined presence of trace iron impurities and Bi3+ ions. The V-doped glasses reveal six UV bands and two visible bands, probably arising from vanadium ions in three possible valencies, V3+, V4+ and V5+, beside that due to trace iron impurity beside Bi3+ ions. The spectra reveal an obvious resistance of the glasses to successive gamma irradiation. The Raman and infrared spectra show characteristic absorption bands, which indicate the sharing of Bi3+ ions as glass-forming (BiO6) octahedral units together with the presence of various groups of the borate network.  相似文献   

2.
Ultraviolet and visible absorption spectra of prepared undoped lithium phosphate glass and samples of the same nominal composition with additional Bi2O3 contents were measured before and after being subjected to gamma doses of 3 and 6 Mrad. The base undoped lithium phosphate glass exhibits strong charge transfer ultraviolet absorption bands, which are related to unavoidable presence of trace iron impurities within the raw materials for the preparation of this glass. Bi2O3-containing glasses show the extension of UV absorption beside the resolution of visible bands at 400, 450, and 700 nm with the increase of Bi2O3 content due the sharing of absorption of Bi3+ ions. Gamma irradiation of the base glass reveals extended induced bands; the UV bands are related to the conversion of some Fe2+ to Fe3+ through photochemical reactions during the irradiation process. The visible induced bands are related to the formation of positive hole centers from the host phosphate glass. Glasses containing Bi2O3 are observed to show some shielding behavior, which is attributed to the presence of heavy weight and large atomic number of Bi3+ ions. Infrared absorption spectral measurements of the base lithium phosphate glass show characteristic vibrational modes which are related to specific phosphate groups. The addition of Bi2O3 in measurable percent produces additional vibrational bands due to the introduction of Bi–O groups such as BiO3 and BiO6.  相似文献   

3.
Undoped and TiO2-doped lead phosphate glasses were prepared. Ultraviolet (UV)–visible and Fourier transform-infrared (IR) absorption spectra of the prepared samples were measured before and after being subjected to doses of 30 and 60 kGy of gamma irradiation. The parent undoped lead phosphate glass reveals charge transfer UV absorption bands which are attributed to the presence of unavoidable iron impurities contaminated within the raw materials used for the preparation of the glasses and the sharing of divalent lead (Pb2+) ions. Experimental spectral data indicate that the doped titanium ions are involved in such glasses in two valences, namely the trivalent and tetravalent states. The predominant trivalent titanium (Ti3+) ions are characterized by its purple color and exhibiting two visible absorption bands at about 500–550 and 700–720 nm. The lesser tetravalent titanium (Ti4+) ions belong to the d0 configuration and generally exhibit only an UV absorption band. Spectral data show that gamma irradiation causes noticeable changes in the undoped and TiO2-doped samples in the UV range while the effects are limited in the visible range. The observed changes in the UV region are attributed to photochemical reactions while TiO2-doped samples show retardation or shielding toward continuous gamma irradiation together with the sharing of heavy Pb2+ ions. IR absorption spectra reveal the vibrations of several phosphate groups including the metaphosphate chains as the main structural building units together with the possible Pb?O vibrations.  相似文献   

4.
The UV–Visible, Fourier transform infrared (FTIR) and Raman and electron spin resonance (ESR) spectra of undoped lead phosphate and MoO3-doped glassy samples have been investigated. The UV–VIS absorption spectra were re-measured after successive gamma irradiation. Before irradiation, undoped sample exhibited strong ultraviolet absorption, which was attributed to co-absorption due to trace iron impurities (mainly Fe3+ ions) and lead Pb2+ ions. With the introduction of MoO3 in progressive amounts, extra visible bands were recorded at about 400–440, 540, 750 and 870?nm. These bands are most likely correlated with the presence of Mo3+, Mo4+ and Mo5+ ions in the host glass. In the undoped specimen, gamma irradiation produced UV absorption bands that increased slightly with irradiation but no visible bands were recorded. Samples containing high MoO3 content showed some resistance to irradiation with no bands in the visible region being observed. FTIR absorption spectra of the undoped and MoO3-doped samples revealed the formation of metaphosphate and pyrophosphate structural units. Highly MoO3-doped samples exhibited additional bands due to molybdate groups. Raman and ESR spectra were in agreement with UV–VIS and IR data, indicating the presence of molybdenum ions in lead phosphate glass, as Mo3+, Mo4+ and Mo6+ with different ratios. However, such glassy systems favor the trivalent species.  相似文献   

5.
Ultraviolet and visible spectroscopic measurements were used to investigate prepared undoped and Mn-doped sodium phosphate glasses before and after successive gamma irradiation. The effects of both glass composition and MnO2 content on the generation of radiation-induced defects were investigated. Undoped sodium phosphate glass shows strong UV absorption, which is attributed to the presence of trace iron impurities present in the raw materials. Mn-doped glasses reveal an additional visible broad band centered at about 500 nm due to Mn3+, which has recently been related to the 5Eg5T2g transition. The radiation-induced bands are correlated with the generation of liberated electron–hole pairs during the process of gamma irradiation and the possibility of photochemical reactions especially with trace iron impurities and manganese ions. The intensity and the position of the induced bands are observed to depend on the type and composition of glass, concentration of the dopant and also on the irradiation dose. Manganese ions when present in relatively higher content have been found to show a shielding behavior towards the effects of progressive gamma irradiation causing a retardation of the growth of the induced defects. Infrared and Raman spectra of the undoped and Mn-doped glasses were measured to investigate the structural phosphate groups present and the effect of MnO2 on the network structure. An ESR investigation was carried out to confirm the state of manganese ions in the prepared sodium phosphate glasses.  相似文献   

6.
Undoped and CuO-doped lithium phosphate, lead phosphate and zinc phosphate glasses were prepared. UV-visible and infrared absorption spectra of the prepared samples were measured before and after successive gamma irradiation. Experimental optical spectra of the undoped samples reveal strong UV absorption bands, which are attributed to the presence of trace iron impurities in both the lithium and zinc phosphate glasses while the lead phosphate glass exhibits broad UV bands due to combined absorption of trace iron impurities and divalent lead ions. The CuO-doped glasses reveal an extra broad visible band due to Cu2+ ions in octahedral coordination. The effects of gamma irradiation have been analyzed for both the sharing of all constituent components including trace iron impurities. Infrared absorption spectra of the prepared samples were investigated by the KBr disk technique. The FTIR spectra reveal main characteristic absorption bands due to different phosphate groups. The IR spectra are observed to be slightly affected by the increase of CuO in the doping level (0.2-3%) indicating the stability of the main network units.  相似文献   

7.
Optical and FTIR spectroscopic measurements and electron paramagnetic resonance (EPR) properties have been utilized to investigate and characterize the given compositions of binary bismuth silicate glasses. In this work, it is aimed to study the possibility of using the prepared bismuth silicate glasses as a good shielding material for γ-rays in which adding bismuth oxide to silicate glasses causes distinguish increase in its density by an order of magnitude ranging from one to two more than mono divalent oxides. The good thermal stability and high density of the bismuth-based silicate glass encourage many studies to be undertaken to understand its radiation shielding efficiency. For this purpose a glass containing 20% bismuth oxide and 80% SiO2 was prepared using the melting–annealing technique. In addition the effects of adding some alkali heavy metal oxides to this glass, such as PbO, BaO or SrO, were also studied. EPR measurements show that the prepared glasses have good stability when exposed to γ-irradiation. The changes in the FTIR spectra due to the presence of metal oxides were referred to the different housing positions and physical properties of the respective divalent Sr2+, Ba2+ and Pb2+ ions. Calculations of optical band gap energies were presented for some selected glasses from the UV data to support the probability of using these glasses as a gamma radiation shielding material. The results showed stability of both optical and magnetic spectra of the studied glasses toward gamma irradiation, which validates their irradiation shielding behavior and suitability as the radiation shielding candidate materials.  相似文献   

8.
Concentration series of silicate and germanate glasses activated by bismuth are studied. It is shown that luminescence in the IR region is controlled by several active centers related to bismuth. Based on a comparison of spectroscopic characteristics of the studied glasses with the data previously obtained for chloride glass, the observed centers were identified as Bi+, Bi 2 4+ , and Bi 5 3+ in germanate glass and Bi+, Bi 2 4+ in silicate glass.  相似文献   

9.
Absorption, fluorescence, excitation and decay time measurements have been made on a range of glasses containing thallium, lead and bismuth. In calcium phosphate and sodium silicate glasses the bands in both absorption and emission have been assigned to the A band of the Seitz model. For the bismuth doped glasses the A band was always observed in absorption but the emission was very dependent upon glass composition. Configurational coordinate curves have been constructed for Tl+ and Pb2 in a glass of composition CaO. P2O5. Coordinate diagrams are also used to explain the presence or absence of bismuth fluorescence in certain glass compositions. In some borate glasses containing bismuth a brown colouration was observed. This was probably due to particle separation. No A band emission was observed from bismuth in a calcium phosphate glass. Instead there was a faint red emission similar to the cathodoluminescent bands of crystalline calcium phosphates.  相似文献   

10.
The absorption spectra of Pr3+ and Dy3+ ions in three glass matrices (SiO2-P2O5-GeO2, Al2O3-B2O3-SiO2, and LiB3O5) are thoroughly studied in the near-IR spectral range (4600–14 300 cm?1). The temperature dependences of the intensity, the width, and the location of the absorption bands observed are investigated for the first time. It is shown that the f-f transitions in the studied glasses are allowed by static odd distortions in the environment of the rare-earth ions and these distortions decrease with an increase in temperature. A comparative analysis of the absorption band parameters and their temperature behavior in different materials makes it possible to determine the differences in magnitudes, symmetries, and dispersions of the distortions in the nearest environment of rare-earth ions in different glasses.  相似文献   

11.
10MO·20Bi2O3·(70−x)B2O3·xCuO [M=Pb, Zn] with x=0, 0.4 and 0.8 (wt%) glasses were synthesized by the melt-quenching technique and were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Physical parameters, like density, and spectroscopic studies (optical absorption, EPR, FTIR and photoluminescence) were used to understand the role of modifier oxide and CuO in the glass matrix. A red shift of the absorption band corresponds to 2B1g2B2g transition of Cu2+ ions from P2 to Z4 samples and the increase of hyperfine splitting factor (A) from P2 to Z2 shows that with the integration of PbO by ZnO the electron density around copper ion is increased. It is also supported by the gradual increase in theoretical optical basicity values of ZnO mixed glasses, as compared to that of PbO mixed glass matrix. Reduced bismuth radicals are found in undoped and 0.4% CuO doped glasses of both the series. Analysis of the absorption and emission studies indicates that the concentration of luminescence centers of bismuth ions (Bi3+ ions in UV region) is decreased by the integration of ZnO as well as by increasing the dopant concentration. In lead series PbO4 and BiO3 units are increased from P2 to P4 and in zinc series BiO3 units are decreased from Z0 to Z4. The conductivity of the glass matrices is increased in both the series with the dopant of CuO.  相似文献   

12.
Er/Bi codoped SiO2 thin films were prepared by sol-gel method and spin-on technology with subsequent annealing process. The bismuth silicate crystal phase appeared at low annealing temperature while vanished as annealing temperature exceeded 1000 °C, characterized by X-ray diffraction, and Rutherford backscattering measurements well explained the structure change of the films, which was due to the decrease of bismuth concentration. Fine structures of the Er3+-related 1.54 μm light emission (line width less than 7 nm) at room temperature was observed by photoluminescence (PL) measurement. The PL intensity at 1.54 μm reached maximum at 800 °C and decreased dramatically at 1000 °C. The PL dependent annealing temperature was studied and suggested a clear link with bismuth silicate phase. Excitation spectrum measurements further reveal the role of Bi3+ ions for Er3+ ions near infrared light emission. Through sol-gel method and thermal treatment, Bi3+ ions can provide a perfect environment for Er3+ ion light emission by forming Er-Bi-Si-O complex. Furthermore, energy transfer from Bi3+ ions to Er3+ ions is evidenced and found to be a more efficient way for Er3+ ions near infrared emission. This makes the Bi3+ ions doped material a promising application for future erbium-doped waveguide amplifier and infrared LED.  相似文献   

13.
High Erbium-doped glass showing the wider 1.5-μm emission band is reported in the Bi2O3–B2O3–Ga2O3 system and its thermal stability and optical properties such as absorption, emission spectra, absorption and stimulated emission cross-sections and fluorescence lifetime are investigated. Compared with other glass hosts, the gain bandwidth properties of high Er3+ content in BBG glass are better than those of tellurite, germanate, silicate and phosphate glasses. The broad and flat 4I13/24I15/2 emission and the larger stimulated emission cross-section of Er3+ ions around 1.5 μm enable it to be used as a host material for potential broadband optical amplifiers at C and L bands in the microchip configuration.  相似文献   

14.
This work reports experimental results of an effort undertaken to identify and characterize the radiation-induced defects created during gamma (γ)-irradiation of commercial glass on the basis of optical absorption measurements performed before and after irradiation. It is assumed that the induced absorption band formed after γ-irradiation of soda-lime-silica (SLS) glasses are created by some hole-type color centers related with non-bridging oxygen ions (NBO) located in different surroundings.Results have been discussed taking into consideration the presence of iron as impurity in the glass structure. It is well known that the absorption bands of Fe3+ in the visible range is at 420-440 nm, in this study the band at 430 nm was followed. Also, the optical gap variations (ΔEopt) induced by γ-irradiation were investigated.Moreover, the study illustrated that the optical absorption sensitivity and the mechanism of fading either at room or elevated temperature has been discussed in relation to successive irradiation doses, dose rate and thickness. The results are discussed on the basis of the annihilation mechanisms of induced irradiation defects.  相似文献   

15.
Luminescence of the Bi3+ single and dimer centers in UV and visible ranges is studied in YAG:Bi (0.13 and 0.27 at% of Bi, respectively) single crystalline films (SCFs), grown by liquid phase epitaxy from a Bi2O3 flux. The cathodoluminescence spectra, photoluminescence decays, and time-resolved spectra are measured under the excitation by accelerated electrons and synchrotron radiation with energies of 3.7 and 12 eV, respectively. The energy level structure of the Bi3+ single and dimer centers was determined. The UV luminescence of YAG:Bi SCF in the bands that peaked at 4.045 and 3.995 eV at 300 K is caused by radiative transitions of Bi3+ single and dimer centers, respectively. The excitation spectra of UV luminescence of Bi3+ single and dimer centers consist of two dominant bands, peaked at 4.7/4.315 and 5.7/6.15 eV, related to the 1S03P1 (A band) and 1S01P1 (C-band) transitions of Bi3+ ions, respectively. The excitation bands that peaked at 7.0 and 7.09 eV are ascribed to excitons bound with the Bi3+ single and dimer centers, respectively. The visible luminescence of YAG:Bi SCF presents superposition of several wide emission bands peaking within the 3.125-2.57 eV range and is ascribed to different types of excitons localized around the Bi3+ single and dimer centers. Apart from the above mentioned A and C bands the excitation spectra of visible luminescence contain wide bands at 5.25, 5.93, and 6.85 eV ascribed to the O2−→Bi3+ and Bi3+→Bi4+ + e charge transfer transition (CTT) in Bi3+ single and dimer centers. The observed significant differences in the decay kinetics of visible luminescence under excitation in A and C bands of Bi3+ ions, CTT bands, and in the exciton and interband transitions confirm the radiative decay of different types of excitons localized around Bi3+ ions in the single and dimer centers.  相似文献   

16.
We report the results of our investigation on the optical properties of the bismuth borate glass (75B2O3-25Bi2O3). Unusual near-infrared (NIR) and visible band luminescence was observed when the sample was excited by lasers working at 532 and 808 nm. The NIR fluorescent lifetime of the sample measured at room-temperature was longer than two hundred microseconds. This indicated that this glass system could be a new candidate for the broadband optical amplification and laser material covering the wavelength from 1100 to 1300 nm. The influences of preparation conditions and glass compositions on the luminescence properties of glasses were investigated. It was found that the heat-treatment under air and hydrogen atmosphere can both weaken the infrared luminescence of the materials. Furthermore, with the addition of oxidation agent CeO2, the sample did not show any NIR luminescence upon the excitation of the lasers working at 532 or 808 nm. All the results indicated that the infrared luminescence center should be Bi+ ions.  相似文献   

17.
The optical absorption and photoluminescence emission spectra of terbium doped sodium and lithium aluminium silicate glasses have been measured as a function of terbium concentration. Optical absorption has been measured over the wavelength range from 250 nm to 40 μm and the absorption bands attributed to Tb3+ ions have been identified. Luminescence emission occurs in two groups of bands in the blue and in the green. The green 5D47FJ emission is more intense than the blue 5D37FJ. The green luminescence is enhanced at the expense of the blue when the Tb3+ ion concentration reaches 0.5 molar%, which corresponds to an ion separation of 20 Å. The green emission is quenched when the Tb3+ ion concentration exceeds 5 molar%, corresponding to an ion separation of 9.5 Å. It is concluded that energy transfer from 5D3 to 5D4 levels begins at Tb3+ ion separations of 20 Å, and that the process is multipolar. Exchange dipole processes set in at 9.5 Å and quench the green emission. The ion separations at which the two processes occur in silicate glasses are much larger than those at which similar processes set in crystalline material. This enhancement of energy transfer processes in silicate glass is attributed to inhomogeneous broadening of the absorption and emission bands. The detailed structure of the emission bands, particularly that of the 5D47F6,5,4 doublets, is used to suggest that the Tb3+ ions occupy two different sites with rhombohedral and cubic symmetries.  相似文献   

18.
Silicate and phosphate glasses co-doped with rare-earth ions (REIs)(Ce3+, Tb3+, Eu3+) are presented in the present work. Their photoluminescence properties were studied by excitation and emission spectra. A combination of blue, green and red bands is shown for both silicate and phosphate glasses that allows the observation of white light when the glass is excited by UV light. The relative emission intensity ratios of the green to the red can be tuned by varying the concentrations of activator and/or sensitizer as well as the composition of glass matrices.  相似文献   

19.
Mg2+-, Ca2+-, Sr2+- and Ba2+-doped silica glasses have been prepared using sol-gel processing by employing Si(OC2H5)4, MgCl26H2O, CaCl22H2O, SrCl26H2O and BaCl22H2O as precursors, with HCl as a catalyst. The UV–visibleabsorption spectra of the doped samples are almost the same as those of the undoped sample. The absorption bands of alkaline earth metallic ions have not been observed in the doped samples. Strong visible light has been observed from sol- gel silica glasses doped with alkaline earth metallic ions. The relative fluorescence intensity of the Sr2+-doped (the impurity mole ratio of Sr2+ was 0.268%) and the Ba2+-doped (the impurity mole ratio of Ba2+ was 0.448%) samples was about 4 times that of the undoped sample. The relative fluorescence intensity of the Mg2+-doped (the impurity mole ratio of Mg2+ was 0.069%) sample was about 2.5 times that of the pure glass sample. The relative fluorescence intensity of the Ca2+- doped (the impurity mole ratio of Ca2+ was 0.179%) sample was about 3 times that of the pure glass sample. Alkaline earth metallic ions affect the formation and conversion of luminescent defects in sol-gel silica glass. Thus, the relative fluorescence intensity of the doped samples increases more than that of the undoped sample. Received: 17 April 2001 / Accepted: 6 June 2001 / Published online: 30 August 2001  相似文献   

20.
罗彩香  夏海平  虞灿  徐军 《物理学报》2011,60(7):77806-077806
用坩埚下降法(Bridgman)生长出了Bi离子掺杂的CdWO4单晶.测定了晶体不同部位的吸收光谱、发射光谱和X射线电子能谱(XPS).Bi离子的掺入引起CdWO4晶体的吸收边从345 nm红移到399 nm.在311 nm, 373 nm,808 nm和980 nm光的激发下,分别观测到中心波长为470 nm,528 nm,1078 nm和较弱的1504 nm四个不同发射带.Bi:CdWO4单晶的XPS谱分别与Bi2 关键词: Bi离子 荧光光谱 X射线电子能谱 4单晶')" href="#">CdWO4单晶  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号