首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P.-W. Zhang  L.-Z. Wu 《哲学杂志》2013,93(22):3175-3208
The solutions to two or four parallel Mode-I permeable cracks in magnetoelectroelastic composite materials are derived using the generalized Almansi's theorem under permeable electric and magnetic boundary conditions. The problem can be solved through the Fourier transform with the help of two pairs of dual integral equations, in which unknown variables were jumps of displacements across crack surfaces, not dislocation density functions. To solve the dual integral equations, the jumps of displacements across crack surfaces were directly expanded in a series of Jacobi polynomials to obtain the relations among the electric displacement intensity factors, the magnetic flux intensity factors and the stress intensity factors at the crack tips. The paper presents the interactions of two or four parallel Mode-I cracks in magnetoelectroelastic composite materials and the crack-shielding effect in magnetoelectroelastic composite materials.  相似文献   

2.
The interaction of four parallel non-symmetric permeable cracks in a piezoelectric/piezomagnetic composite plane subjected to anti-plane shear stress loading was studied by the Schmidt method. The problem was formulated through a Fourier transform into four pairs of dual integral equations, in which unknown variables are jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displacements across the crack surfaces were directly expanded as a series of Jacobi polynomials. Finally, the relationships among the electric displacement, magnetic flux and stress fields near the crack tips were obtained. The results show that the stress, the electric displacement and the magnetic flux intensity factors at the crack tips depend on the lengths and spacing of cracks. It was also revealed that the crack shielding effect is present in piezoelectric/piezomagnetic composites.  相似文献   

3.
研究磁电弹性体中螺型位错与唇口裂纹的相互作用。结合Muskhelishvili方法和干扰技术, 在假定裂纹面具有不可渗透条件下得到磁电弹性体中由位错和唇口裂纹所诱导的应力场、电场和磁场的解析解。应用广义Peach-Koehler公式,得到作用在位错上的影像力。通过数值算例,得到场强度因子的变化规律及影像力和广义力随位错位置的变化规律。  相似文献   

4.
A general treatment is presented of the two-dimensional problem of N collinear cracks in an infinite electrostrictive material subjected to remote electric loads based on the complex variable method combined with analytical extension of the complex variable functions. First, for the case of permeable cracks, general solutions for the electric potentials, Maxwell stresses, electroelastic stresses and stress intensity factors are derived. As specific examples, explicit and concise results are obtained for the cases of one crack and two collinear cracks. Then, these results are extended to the cases of impermeable and conducting collinear cracks, respectively. It is found that, in general, the total stresses always have the classical singularity of the r - 1/2 type at the crack tips, whereas the Maxwell stresses have an r - 1 singularity for the above three crack models. Finally, it is concluded that the applied electric field may either enhance or retard crack growth depending on the electric boundary conditions adopted on the crack faces, and the Maxwell stresses on the crack faces and at infinity.  相似文献   

5.
The interaction of two collinear cracks is obtained for a type-II superconducting under electromagnetic force. Fracture analysis is performed by means of finite element method and the magnetic behavior of superconductor is described by the critical-state Bean model. The stress intensity factors at the crack tips can be obtained and discussed for decreasing field after zero-field cooling. It is revealed that the stress intensity factor decreases as applied field increases. The crack-tip stress intensity factors decrease when the distance between the two collinear cracks increases and the superconductors with smaller crack has more remarkable shielding effect than those with larger cracks.  相似文献   

6.
郭怀民  赵国忠 《计算物理》2020,37(2):198-204
根据本征方程,研究磁电弹性体中若干平行螺型位错与Griffith裂纹的相互作用.结合Muskhelishvili方法和算子理论,得到磁电弹性体中由位错和裂纹所诱导的应力场、电场和磁场的解析解.数值算例表明:在裂纹的端点及位错点上仍然存在应力的奇异性,离位错点越远处广义力越小,结论与已有的结果相符,证明了结论的正确性.当位错点与裂纹端点距离越近时,裂纹与位错间的应力场越小,并逐渐趋近于零.  相似文献   

7.
A rigorous theory of the diffraction of SH-waves by a stress-free crack embedded in a semi-infinite elastic medium is presented. The incident time-harmonic SH-wave is taken to be either a uniform plane wave or a cylindrical wave originating from a surface line-source. The resulting boundary-value problem for the unknown jump in the particle displacement across the crack is solved by employing an integral equation approach. The unknown quantity is expanded in a complete sequence of Chebyshev polynomials. By writing the Green function as a Fourier integral, an infinite system of linear, algebraic equations for the expansion coefficients is obtained. Numerical results are presented for the particle displacement at the surface of the half-space, the far field radiation characteristic, the scattering cross-section of the crack and the dynamic stress intensity factor at the crack tips, for a range of geometrical parameters.  相似文献   

8.
Y.-B. Zhou 《哲学杂志》2018,98(19):1780-1798
The electroelastic problem related to two collinear cracks of equal length and normal to the boundaries of a one-dimensional hexagonal piezoelectric quasicrystal layer is analysed. By using the finite Fourier transform, a mixed boundary value problem is solved when antiplane mechanical loading and inplane electric loading are applied. The problem is reduce to triple series equations, which are then transformed to a singular integral equation. For uniform remote loading, an exact solution is obtained in closed form, and explicit expressions for the electroelastic field are determined. The intensity factors of the electroelastic field and the energy release rate at the inner and outer crack tips are given and presented graphically.  相似文献   

9.
10.
Wave processes that occur in an elastic layer when waves traveling in it are diffracted by a system of horizontal cracks are investigated. Integral representations of wave fields are constructed in terms of the convolution of Green’s matrices and unknown jumps of displacements at the cracks. The displacement jumps are determined from the boundary integral equations, which are obtained from the initial boundary-value problem with the boundary conditions at crack faces being satisfied. The spectrum of the integral operator is studied for different variants of mutual crack arrangement and is compared with the spectrum of the corresponding operators for individual cracks; the relationship between the spectrum and the blocking effects is analyzed. The possibility of obtaining an extended frequency band of waveguide blocking in the case of groups of cracks is demonstrated.  相似文献   

11.
The propagation of time-harmonic plane elastic waves in infinite elastic composite materials consisting of linear elastic matrix and rigid penny-shaped inclusions is investigated in this paper. The inclusions are allowed to translate and rotate in the matrix. First, the three-dimensional (3D) wave scattering problem by a single inclusion is reduced to a system of boundary integral equations for the stress jumps across the inclusion surfaces. A boundary element method (BEM) is developed for solving the boundary integral equations numerically. Far-field scattering amplitudes and complex wavenumbers are computed by using the stress jumps. Then the solution of the single scattering problem is applied to estimate the effective dynamic parameters of the composite materials containing randomly distributed inclusions of dilute concentration. Numerical results for the attenuation coefficient and the effective velocity of longitudinal and transverse waves in infinite elastic composites containing parallel and randomly oriented rigid penny-shaped inclusions of equal size and equal mass are presented and discussed. The effects of the wave frequency, the inclusion mass, the inclusion density, and the inclusion orientation or the direction of the wave incidence on the attenuation coefficient and the effective wave velocities are analysed. The results presented in this paper are compared with the available analytical results in the low-frequency range.  相似文献   

12.
In this paper,we analyze the stress and electric field intensity factors affected by residual surface stress for conducting cracks in piezoelectric nanomaterials.The problem is reduced to a system of non-linear singular integral equations,whose solution is determined by iteration technique.Numerical results indicate that the residual surface stress can significantly alter the crack tip fields at nanometer length scales.Due to the residual surface stress,281he electric field can produce stress around crack tip.This suggests a strong electromechanical coupling crack tip field for nanoscale piezoelectric materials.Such a finding is considerably different from the classical fracture mechanics results.A transit electric field to stress load ratio is identified,for which influences of residual surface stresses vanish.The research is useful for the applications of nanoscale piezoelectric devices.  相似文献   

13.
周旺民  范天佑 《中国物理》2001,10(8):743-747
The plane elasticity theory of two-dimensional octagonal quasicrystals is developed in this paper. The plane elasticity problem of quasicrystals is reduced to a single higher-order partial differential equation by introducing a displacement function. As an example, the exact analytic solution of a Mode I Griffith crack in the material is obtained by using the Fourier transform and dual integral equations theory, then the displacement and stress fields, stress intensity factor and strain energy release rate can be calculated. The physical significance of the results relative to the phason and the difference between the mechanical behaviours of the crack problem in crystals and quasicrystals are figured out. These provide important information for studying the deformation and fracture of the new solid phase.  相似文献   

14.
D.K. Yi  J. Zhuang  I. Sridhar 《哲学杂志》2013,93(26):3456-3472
Elastic–plastic stress analysis has been carried out for the plastic zone size and crack tip opening displacement of a sub-interface crack with small scale yielding. In our study, the shape of plastic zone is assumed as a long, slim strip at both crack tips. In the plastic zone, both normal stress and shear stress exist and are considered due to the bi-material interface. The values of the plastic zone size, normal stress and shear stress are determined by satisfying the conditions where both Modes I and II stress intensity factors vanish and Von Mises yield criterion is met. In the present paper, the sub-interface crack is simulated by continuously distributed dislocations which will result in singular integral equations. Those singular integral equations can be solved by reducing them to a set of linear equations. The values of the plastic zone size and crack tip opening displacement are obtained through an iterative procedure. Finally, the effect of normalized loading, normalized crack depth (distance to the interface) and Dundurs’ parameters on the normalized plastic zone size and the normalized crack tip opening displacement is discussed.  相似文献   

15.
郭俊宏  刘官厅 《中国物理 B》2008,17(7):2610-2620
Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solved, and the exact analytic solutions of the stress intensity factors (SIFs) for mode Ⅲ problem are obtained. Under the limiting conditions, the present results reduce to the Griffith crack and many new results obtained as well, such as the circular hole with asymmetric collinear cracks, the elliptic hole with a straight crack, the mode T crack, the cross crack and so on. As far as the phonon field is concerned, these results, which play an important role in many practical and theoretical applications, are shown to be in good agreement with the classical results.  相似文献   

16.
Linear vibrations of Reissner-Mindlin-type composite plates in the presence of piezoelectric eigenstrains are studied. Piezoelectric eigenstrains are produced by applying electrical loads to piezoelectric layers embedded in or attached to substrate layers. The influence of the mechanical field upon the electric field is taken into account in the modelling, ending up with electro-mechanically coupled field equations and boundary conditions, which describe the mechanical and the electrical dynamic response of the plate.The mechanical displacements are approximated by means of the kinematic hypothesis of Hencky. The electric potential distribution is assumed to be composed of a superposition of a linear and a parabolic distribution in the thickness direction. The linear part accounts for the electric potential difference between the electrodes of the totally electroded piezoelectric layers. The parabolic part is considered in order to take into account the influence of the mechanical field upon the electric potential by means of the direct piezoelectric effect. A weak two-dimensional formulation of the three-dimensional field equations is obtained by utilizing mechanical and electrical variational principles. This formulation is characterized by resultants of stress and electric displacement. The electro-mechanically coupled behaviour comes into play by means of the constitutive relations. In case the electric potential difference is not prescribed, it can be calculated from a relation, which connects the total electric charge and the electric potential difference to each other. Because this relation is obtained from the Gauss law of electrostatics, requiring integration with respect to the area of the electrode, non-local constitutive relations for the plate are found. The non-local constitutive relations bring a new aspect into the theory of plates. An analysis for the practically interesting one-dimensional case of composite, piezoelectric plates in cylindrical motion completes the paper.  相似文献   

17.
Based on the three-dimensional linear elastic equations and magnetoelectroelastic constitutive relations, propagation of symmetric and antisymmetric Lamb waves in an infinite magnetoelectroelastic plate is investigated. The coupled differential equations of motion are solved, and the phase velocity equations of symmetric and antisymmetric modes are obtained for both electrically and magnetically open and shorted cases. The dispersive characteristic of wave propogation is explored. The mechanical, electric and magnetic responses of the lowest symmetric and antisymmetric Lamb wave modes are discussed in detailed. Obtained results are valuable for the analysis and design of broadband magnetoelectric transducer using composite materials.  相似文献   

18.
祝爱玉  范天佑 《中国物理》2007,16(4):1111-1118
Based on the displacement potential functions, the elastic analysis of a mode II crack in an icosahedral quasicrystal is performed by using the Fourier transform and dual integral equation theory. By the solution, the analytic expressions for the displacement field and stress field are obtained. The asymptotic behaviours of the phonon and phason stress fields around the crack tip indicate that the stresses near the crack tip exhibit a square root singularity. The most important physical quantities of fracture theory, crack stress intensity factor and energy release rate, are evaluated in an explicit version.  相似文献   

19.
A problem of two equal, semi-permeable, collinear cracks, situated normal to the edges of an infinitely long piezoelectric strip is considered. Piezoelectric strip being prescribed out-of-plane shear stress and in-plane electric-displacement. The Fourier series and integral equation methods are adopted to obtain analytical solution of the problem. Closed-form analytic expressions are derived for various fracture parameters viz. crack-sliding displacement, crack opening potential drop, field intensity factors and energy release rate. An numerical case study is considered for poled PZT−5H, $BaTiO_3$ and PZT−6B piezoelectric ceramics to study the effect of applied electro-mechanical loadings, crack-face boundary conditions as well as inter-crack distance on fracture parameters. The obtained results are presented graphically, discussed and concluded.  相似文献   

20.

This paper deals with a case study for the piezoelectric materials suddenly exposed to an environmental medium of different temperature. The problem is idealized to a plate containing an edge crack or an embedded crack. The stress and electric displacement histories in an uncracked plate are calculated. These stresses and electric displacements are then added to the crack surface tractions and electric displacements with opposite sign to formulate a mixed boundary value problem. The cracking problem is thus reduced to a singular integral equation of Cauchy type, which is then solved numerically. Both impermeable crack assumption and permeable crack assumption are considered. The results for stress and electric displacement intensity factors are computed as a function of normalized time and crack size. Lower bound solutions are obtained for the maximum thermal shock that the material can sustain without catastrophic failure according to the two distinct criteria: (i) The maximum local tensile stress equals the tensile strength of the medium. (ii) The maximum stress intensity factor for the pre-existing representative crack equals the fracture toughness of the medium. The parameters that control the transient thermal stress and electric displacement are also identified. The method can be used to explore susceptibility to thermal fracture in piezoelectric materials containing pre-cracks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号