首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diffusion rates (D) of Au in two amorphous alloys, Fe80B20 and Fe82B18, and of Cu in amorphous Fe82B18 alloy were measured in the temperature range 546–645 K by using the technique of Rutherford backscattering spectrometry (RBS) and Auger electron spectroscopy (AES), respectively. The diffusion of Au was found to be 3 to 6 times faster in Fe80B20 than in Fe82B18, though both the alloys had almost similar crystallization temperatures. The observed differences in the diffusion rates corroborate the fact that Fe80B20 has a more open structure than Fe82B18 as revealed from the reported values of the metal packing fractions of these two alloys. Also, the diffusivities of smaller sized Cu atoms (radius: 0.128 nm) were found to be higher by more than an order of magnitude than those of larger sized Au atoms (radius: 0.146 nm), suggesting a dependence ofD on the size of the diffusing species.  相似文献   

2.
The structure of atactic poly(styrene) in films prepared from chloroform solutions was studied by small-angle X-ray scattering and electron microscopy. It was shown that the density fluctuations in films corresponding to dilute poly(styrene) solutions are associated with the aggregates of particles with the radius R 0 close to the hydrodynamic radius of the coil. The value of R 0 in the films decreases with an increase in the poly(styrene) concentration due to the coil entanglement and the blob formation. The coil (its fractal dimension is D = 2) → blob (D = 3) transition leads to an increase in the density and glass transition temperature of films, which is caused by enhancing interchain and intrachain interactions of segments in the solid state of atactic poly(styrene).  相似文献   

3.
吴琼  李树索  马岳  宫声凯 《中国物理 B》2012,21(10):109102-109102
The diffusion coefficients of several alloying elements(Al,Mo,Co,Ta,Ru,W,Cr,Re) in Ni are directly calculated using the five-frequency model and the first principles density functional theory.The correlation factors provided by the five-frequency model are explicitly calculated.The calculated diffusion coefficients show their excellent agreement with the available experimental data.Both the diffusion pre-factor(D 0) and the activation energy(Q) of impurity diffusion are obtained.The diffusion coefficients above 700 K are sorted in the following order:DAl>DCr>DCo>DTa>DMo>DRu>DW>D Re.It is found that there is a positive correlation between the atomic radius of the solute and the jump energy of Ni that results in the rotation of the solute-vacancy pair(E 1).The value of E 2-E 1(E 2 is the solute diffusion energy) and the correlation factor each also show a positive correlation.The larger atoms in the same series have lower diffusion activation energies and faster diffusion coefficients.  相似文献   

4.
The dynamic and static properties of a supercooled (non-entangled) polymer melt are investigated via molecular-dynamics (MD) simulations. The system is confined between two completely smooth and purely repulsive walls. The wall-to-wall separation (film thickness), D, is varied from about 3 to about 14 times the bulk radius of gyration. Despite the geometric confinement, the supercooled films exhibit many qualitative features which were also observed in the bulk and could be analyzed in terms of mode-coupling theory (MCT). Examples are the two-step relaxation of the incoherent intermediate scattering function, the time-temperature superposition property of the late time α-process and the space-time factorization of the scattering function on the intermediate time scale of the MCT β-process. An analysis of the temperature dependence of the α-relaxation time suggests that the critical temperature, T c, of MCT decreases with D. If the confinement is not too strong ( D≥10monomer diameter), the static structure factor of the film coincides with that of the bulk when compared for the same distance, T - T c(D), to the critical temperature. This suggests that T - T c(D) is an important temperature scale of our model both in the bulk and in the films. Received 12 September 2001  相似文献   

5.
孙香冰  冯林  焦现炜 《中国物理 B》2011,20(6):67804-067804
Photoluminescence spectroscopy is used to study defects found in single ZnO nano/microwires at 90 K. The defect, acting as binding site for bound exciton (BX) transition, is represented by BF, the fractional intensity of the BX peak in the whole near-band edge ultraviolet (UV) luminescence. The concentration of defects as origins of the visible emissions is proportional to the intensity fraction DF, i.e., the intensity fraction of visible emissions in the sum total of all UV and visible luminescences. By comparing BF and DF, it is concluded that the two defects are not correlated to each other. The former kind of defect is considered to be related to the blueshift of the near-band edge peak as the radius of the nano/microwires decreases at room temperature.  相似文献   

6.
The Martin-Siggia-Rose functional technique and the selfconsistent Hartree approximation is applied to the dynamics of a D-dimensional manifold in a melt of similar manifolds. The generalized Rouse equation is derived and its static and dynamic properties are studied. The static upper critical dimension, d uc =2D/(2-D), discriminates between Gaussian (or screened) and non-Gaussian regimes, whereas its dynamical counterpart, , discriminates between Rouse- and renormalized-Rouse behavior. The Rouse modes correlation function in a stretched exponential form and the dynamical exponents are calculated explicitly. The special case of linear chains D=1 shows agreement with Monte-Carlo simulations. Received: 22 May 1998 / Received in final form: 31 August 1998 / Accepted: 8 September 1998  相似文献   

7.
The two-dimensional (2D) Heisenberg model with anisotropic exchange (Δ = 1−J x /J z ) and S=1/2 is investigated by the quantum Monte Carlo method. The energy, susceptibility, specific heat, spin-spin correlation functions, and correlation radius are calculated. The sublattice magnetization (σ) and the Néel temperature of the anisotropic antiferromagnet are logarithmic functions of the exchange anisotropy: 1/σ+1+0.13(1)ln(1/Δ). Crossover of the static magnetic structural factor as a function of temperature from power-law to exponential occurs for T c /J≈0.4. The correlation radius can be approximated by 1/ξ=2.05T 1.0(6)/exp(1.0(4)/T). For La2CuO4 the sublattice magnetization is calculated as σ=0.45, the exchange is J=(1125–1305) K; for Er2CuO4 J∼625 K and the exchange anisotropy Δ∼0.003. The temperature dependence of the static structural magnetic factor and the correlation radius above the Néel temperature in these compounds can be explained by the formation of topological excitations (spinons). Fiz. Tverd. Tela (St. Petersburg) 41, 116–121 (January 1999)  相似文献   

8.
The effect of processing and annealing temperatures on the grain boundary characters in the ultrafine-grained structure of a 304-type austenitic stainless steel was studied. An S304H steel was subjected to multidirectional forging (MDF) at 500–800°C to total strains of ~4, followed by annealing at 800–1,000°C for 30 min. The MDF resulted in the formation of ultrafine-grained microstructures with mean grain sizes of 0.28–0.85 μm depending on the processing temperature. The annealing behaviour of the ultrafine-grained steel was characterized by the development of continuous post-dynamic recrystallization including a rapid recovery followed by a gradual grain growth. The post-dynamically recrystallized grain size depended on both the deformation temperature and the annealing temperature. The recrystallization kinetics was reduced with an increase in the temperature of the preceding deformation. The grain growth during post-dynamic recrystallization was accompanied by an increase in the fraction of Σ3n CSL boundaries, which was defined by a relative change in the grain size, i.e. a ratio of the annealed grain size to that evolved by preceding warm working (D/D0). The fraction of Σ3n CSL boundaries sharply rose to approximately 0.5 in the range of D/D0 from 1 to 5, which can be considered as early stage of continuous post-dynamic recrystallization. Then, the rate of increase in the fraction of Σ3n CSL boundaries slowed down significantly in the range of D/D0 > 5. A fivefold increase in the grain size by annealing is a necessary condition to obtain approximately 50% Σ3n CSL boundaries in the recrystallized microstructure.  相似文献   

9.
The phase behavior and phase separation dynamics of a PS/PVME/SAN ternary blend using light scattering under a shear rate range of 0.1~40 s?1 were investigated. The cloud point temperature first increases and then decreases with the increase of shear rates. At higher shear rates, the cloud point temperature again increases. The phase separation behavior in the early and later stages under shear field can be explained by the Cahn–Hilliard theory and the exponential growth law, respectively. The delay time τ d ?, the apparent diffusion coefficient D app, the growth rate R(q), and the exponent term show strong dependence on the difference between the experimental temperature and the cloud point temperature (ΔT), and on the shear rates. Compared with PS/PVME binary blends at lower shear rates, τ d for a PS/PVME/SAN ternary blend is smaller, while at higher shear rates τ d is larger. At higher shear rates, the introduction of the third component SAN to a PS/PVME binary blends slows the phase separation process.  相似文献   

10.
The diffusion of Au in dislocation-free or plastically deformed Si (1011 to 1013 dislocations/m2) was measured with the aid of the spreading-resistance technique. The Au profiles produced indislocation-free Si slices by in-diffusion from both surfaces possess nonerfc-type U shapes as predicted by the so-called kick-out diffusion model. This model is used to calculate the contribution of self-interstitials to the (uncorrelated) Si self-diffusion coefficient,D I SD =0.064×exp(–4.80 eV/kT)m2 s–1, from the present and previous data on the diffusivity and solubility of Au in Si in the temperature range 1073–1473 K. Inhighly dislocated Si the diffusion of Au is considerably faster than in dislocation-free Si. From the erfc-type penetration profiles found in this case, effective Au diffusion coefficients were deduced and combined with data on the solubility of Au in Si. ThusC i eq D i=0.0064 ×exp(–3.93 eV/kT)m2 s–1 was obtained in the temperature range 1180–1427 K, whereC i eq andD i are the solubility and diffusivity of interstitial Au in Si.  相似文献   

11.
Processes of the formation of the double distribution of CuCl nanoparticles in glass in two-stage annealing have been analyzed. The distribution of CuCl nanoparticles with the average radius R 1 = 14 and 18 nm appears in 20 and 40 min at temperature T 1 = 700°C in samples 1 and 2, respectively. By this time, the formation of new clusters ends, and only the growth of previously formed clusters occurs (the second stage of nucleation). Then, the formation of the CuCl phase continues at T 2 = 500°C. A decrease in the temperature is accompanied by a decrease in the critical radius of particles of a new phase. For this reason, the formation and growth of new CuCl nuclei begin again and the second distribution with a mean radius of 1 nm or larger is formed. As a result, double distributions of CuCl nanoparticles with significantly different mean radii are formed in samples 1 and 2. The concentration and mean radius of CuCl particles in distributions have been determined from the optical absorption spectra of CuCl nanocrystals at 80 K in the wavelength range of 300–500 nm.  相似文献   

12.
The effect of impurity-induced states on the long range order in a lamellar antiferromagnet (AF) is studied and the magnetic phase-diagram of a lightly doped La2–x Sr x CuO4 is proposed. It is shown that long range magnetic perturbations and the layered structure cause the shrinkage of AF domain on the phase diagram and lead to the reentrant AF transition. A nonmonotonous dependence of the correlation length 2D on temperatureT is obtained; the dependence 2D (x) is exponential for highT and 2D x 1/2 for lowT.  相似文献   

13.
We have studied the rare‐earth (R) dependence of the phonon and magnon scattering in hexagonal RMnO3 (R = Tb, Dy, Ho, Er) thin films using Raman scattering spectroscopy. We found, as the ionic radius of R decreases from Tb to Er, the phonons shift to higher energies. Our results indicate that both the lattice constants a and c of hexagonal RMnO3 would decrease when the ionic radius of R decreases, and the lattice constant c would have a weaker R dependence. The magnons also shift to higher energies when the radius of the R ion decreases, and they show faster upshift than the phonons. In addition, the Néel temperature also shows a systematic increasing behavior when the radius of the R ion decreases. The dependence of the rare‐earth R on the magnons and the Néel temperature can be explained by the rapid increase of the spin‐exchange integral when the Mn–Mn distance decreases. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The statics and dynamics of vacancies and adatoms on different surface orientations in two hcp materials are studied by using static relaxation techniques and many-body potentials. Formation and migration energies and entropies as well as attempt frequencies are evaluated and used in the random walk approach to obtain correlation factors and diffusivities. It is found that the main features of surface diffusion are dominated by jumps on and between a few atomic layers, so that a consistent comparison between the two mechanisms is feasible. The activation energies and the diffusivities for different environments, namely, bulk Q b, D b, symmetric grain boundaries Q gb, D gb, and surfaces, Q s, D s, calculated using the same simulation technique and interatomic potentials, fulfil the expected relationships Q s < Q gb < Q b and D s > D gb > D b. It is also found that generally adatoms are faster surface diffusers than vacancies.  相似文献   

15.
Mutual mass diffusion and thermal diffusion has been investigated in poly(dimethylsiloxane)/ poly(ethylmethylsiloxane) (PDMS/PEMS) polymer blends of equal weight fractions. Molar masses ranged from below 1 to over 20 kg/mol. Both the mutual mass (D) and the thermal diffusion (DT) coefficient contain a thermally activated factor with an activation temperature of 1415 K. The molar mass dependence of DT is due to an end-group effect of the local friction coefficient. The thermal diffusion coefficient in the limit of long chains and infinite temperature is DT0, = - 1.69×10-7cm2(sK)-1. The Soret coefficient ST of blends far enough away from a critical point is proportional to the static structure factor S(q = 0).  相似文献   

16.
The growth rate and morphology of isotactic polystyrene crystals grown in ultrathin films have been examined experimentally in terms of the dependences both on the film thickness and on the crystallization temperature. We have found that the thickness dependence of growth rate, G, shows a crossover change when the film thickness becomes comparable with the lamellar thickness of the polymer crystals, irrespective of the temperatures. The morphology of crystals grown in ultrathin films shows a branching typical of dendrites, the growth of which is supposed to be controlled by a diffusion field. The change in the tip width of the dendrites with crystallization temperature follows the expected dependence of the Mullins–Sekerka stability length, ?MS ∝ (D/G)1/2, determined by the diffusion coefficient, D, and the growth rate. The results confirm that a diffusion field plays an essential role in the evolution of the structure.  相似文献   

17.
A simple and unified model, without any adjustable parameter, is established for size effect on Curie temperature of low-dimensional ferroelectrics (thin films, nanowires and nanoparticles), T c(D), where D denotes size of low-dimensional ferroelectrics. T c(D) function is based on consideration on the size dependence of spontaneous polarization of low-dimensional ferroelectrics P s(D), which is determined by the misfit strain at the ferroelectrics/substrate interface. It is shown that P s(D) and T c(D) functions decrease or increase when the misfit strain is tensile or compressive. The numerically predicted results are in agreement with the available experimental results of BaTiO3 and PbTiO3 nanoparticles and thin films.  相似文献   

18.
The radial profiles of KT-1 tokamak (major radius of 27 cm, minor radius of 4.25 cm, two poloidal stainless-steel limiters) edge plasma parameters are measured using single and triple electric probes. The particle transport parameters are calculated from the measured edge plasma parameters, and the results are analyzed by the simple fluid approximations. The cross-field particle diffusion coefficient (D) in the boundary plasma of the KT-1 is calculated from the density scrape-off length (λn) measured by using a triple probe. The particle density and electron temperature fall exponentially in the radial direction with the e-folding length of λn=0.13 cm and λe=0.41 cm, respectively. From the scrape-off layer (SOL) model, the experimental values of scrape-off length (λn) is used to calculate the cross-field diffusion coefficient (D=1.2×103cm2/s), roughly corresponding to one third of the typical Bohm value. A simple SOL model with the contribution of recombination is introduced to evaluate the Bohm diffusion in the KT-1 tokamak edge plasma. Cross-field heat conductivity calculated from these deduced values is 5.2D in the SOL of KT-1 edge plasma. These results provide the finally certain information for edge particle transport in the KT-1 boundary plasmas.  相似文献   

19.
The perturbed angular correlation of the 173 keV—247 keV--cascade in111Cd was measured for proton-irradiated and quenched cadmium as a function of the annealing temperature. Three distinct defect configurations were identified by the quadrupole interaction frequencies:D 1 with MHz visible for annealing temperaturesT A between 110 K and 130 K,D 2 with |v Q | between 4 and 22 MHz observed for 110 K T A 150 K, andD 3 with no electric field gradient. The fractionD 3 is seen from 77 K to room temperature. The defect configurationsD 1 andD 2 are of vacancy type. It is argued thatD 1 originates from simple defect structures (probably mono- or divacancies) whileD 2 is attributed to small vacancy agglomerates. Because of its larger stability,D 3 is ascribed to defect loops. The experiment shows clearly that a vacancy-like defect is mobile in recovery stage III in Cd.On leave from the Fachbereich Physik, Universität Konstanz, 7750 Konstanz, Germany  相似文献   

20.
The dc conductivity of VN–PbO–TeO2 glasses with different mole percentages of VN, PbO and TeO2 has been measured in the temperature range 125–450?K. The conductivity of the glasses increases with increasing VN content for a fixed mole percentage of PbO. Neither Mott's variable-range hopping (VRH) model at low temperatures (TD/4, where ΘD is the Debye temperature) nor Greaves’ VRH model at intermediate temperatures (ΘD/?4<TD/2) describe the dc conductivity data for these glasses. Multiphonon tunnelling transport of strongly coupled electrons is also unable to account for the carrier transport. However, at high temperatures (T?>?ΘD/2), conduction is shown to be due to small-polaron hopping in the non-adiabatic regime. Alteration of the VN content causes a change in the model parameters achieved from best-fitting curves for the glasses. Modulated differential scanning calorimetry analysis shows that the glass transition temperatures T g in this system vary from 269 to 302°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号