首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 627 毫秒
1.
The effect of 100 keV N+ ions implantation on the surface structure and hardness of poly (allyl diglycol carbonate) (CR-39) polymer was studied. The surface hardness of virgin and implanted CR-39 specimens was determined using a Knoop microhardness test. The surface hardness was found to be enhanced after implantation, e.g., becoming eight times higher at a load of 9.8 mN, for a dose of 2 × 1016 ions cm?2. The change in bonding and surface structure of the CR-39 polymer due to implantation was studied using the specular reflectance Fourier transform infrared (FTIR) technique. The disordering produced in the implanted matrix was estimated using the Urbach edge method from the UV-Visible absorption spectra. The relationship of surface hardening with the chemical and structural changes was explored  相似文献   

2.
Surface modification of Poly (allyl diglycol carbonate) (PADC) is induced by 150 keV Ag ions of different fluences. The pristine as well as bombarded samples were investigated by UV–Vis spectroscopy, Fourier transform-infrared analysis (FTIR) and micro-hardness tester. The variations of wettability and surface free energy were determined by the contact angle measurements. The obtained results showed that ion beam bombardment induced increase in the absorption spectra of the UV–Vis with increase of ion fluence as well. The direct and indirect optical band gap decreased from 4.2 to 3.6 eV for pristine sample to 3.2 and 2.5 eV for those bombarded with Ag ion beam at the highest fluence, respectively. Changes in chemical properties were observed by Fourier transform infrared spectroscopy. Increase in the wettability, surface free energy and work of adhesion with increase the ion fluence were observed. Ion bombardment inducing increasing in a micro-hardness surface due to the high carbon surface concentration and cross-linking effects in the polymeric chains. The bombarded PADC surfaces may find special applications to the field of the micro-electronic devices and printing process.  相似文献   

3.
The influence of low-energy Ar ion beam irradiation on both electrical and optical properties of low-density polyethylene (LDPE) films is presented. The polymer films were bombarded with 320 keV Ar ions with fuences up to 1×1015 cm?2. Electrical properties of LDPE films were measured and the effect of ion bombardment on the DC conductivity, dielectric constant and loss was studied. Optically, the energy gap, the Urbach’s energy and the number of carbon atoms in a cluster were estimated for all polymer samples using the UV–Vis spectrophotometry technique. The obtained results showed slight enhancement in the conductivity and dielectric parameters due to the increase in ion fluence. Meanwhile, the energy gap and the Urbach’s energy values showed significant decrease by increasing the Ar ion fluence. It was found that the ion bombardment induced chain scission in the polymer chain causing some carbonization. An increase in the number of carbon atoms per cluster was also observed.  相似文献   

4.
Ion bombardment is a suitable tool to improve the physical and chemical properties of polymer surface. In this study UHMWPE samples were bombarded with 130 keV He ions to the fluences ranging from 1 × 1012 to 1 × 1016 cm−2. The untreated and ion beam modified samples were investigated by photoluminescence, and ultraviolet-visible (UV-vis) spectroscopy. Remarkable decrease in integrated luminescence intensity with increasing ion fluences was observed. The reduction in PL intensity with increase of ion fluence might be attributed to degradation of polymer surface and formation of defects. The effect of ion fluence on the optical properties of the bombarded surfaces was characterized. The values of the optical band gap Eg, and activation energy Ea were determined from the optical absorption. The width of the tail of the localized states in the band gap (Ea) was evaluated using the Urbach edge method. With increasing ion fluences a decrease in both the energy gap and the activation energy were observed. Increase in the numbers of carbon atoms (N) in a formed cluster with increasing the He ion fluence was observed.  相似文献   

5.
CR-39 polymer samples were irradiated with 50 MeV lithium ion beam; the fluence was varied in the range 1011–1013 ionscm−2. Irradiation effects were studied using UV–visible, FTIR spectroscopic and X-ray diffraction techniques. The observation of the recorded spectra shows that the detector is sensitive to swift ions irradiation and its UV absorption is influenced by the stopping power (dE/dx)e. The FTIR spectra does not show any considerable changes due to the irradiation indicating that the detector is chemically stable. No appreciable change in the diffraction pattern of CR-39 polymer after irradiation upto the fluence level of 1013 ionscm−2 is observed, showing its structural stability also.  相似文献   

6.
The effects of bombardment of 250 keV argon ions in n-type GaSb at fluences 2×1015 and 5×1015 ions cm?2 were investigated by high-resolution X-ray diffraction (HRXRD), Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). HRXRD studies revealed the presence of radiation-damaged layer (strained) peak in addition to the substrate peak. The variation in the lattice constant indicates the strain in the bombarded region. The out-of-plane (?) and in-plane strains (?|) determined from the profiles of several symmetric and asymmetric Bragg reflections, respectively, were found to change with the ion fluence. Simulations of XRD patterns using dynamical theory of X-ray scattering (single-layer model) for the damaged layer yielded good fits to the recorded profiles. FTIR transmission studies showed that the optical density (α·d) of GaSb bombarded with different fluences increases near the band edge with increase in ion fluence, indicating the increase in the defect concentration. The density of the defects in the samples bombarded with different fluences was in the range of 3.20×1021–3.80×1021 cm?3. The tailing energy estimated from the transmission spectra was found to change from 12.0 to 58.0 meV with increasing ion fluences, indicating the decrease of crystallinity at higher fluences. SEM micrographs showed the swelling of the bombarded surface of about 0.33 μm for the fluence of 2×1015 ions cm?2, which increased to 0.57 μm for the fluence of 5×1015 ions cm?2.  相似文献   

7.
Membranes of polyethylene terephthalate, irradiated by O6+ ions at various fluences were characterized by UV/VIS, FTIR, Micro-Raman spectroscopy’s, X-ray diffraction and Atomic force microscopy. UV/VIS measurements indicate shifting of the absorption edge from ultraviolet towards visible regions indicating carbonization while FTIR measurement shows the material degradation. The intensities of Raman band of ion irradiated polymer increases with the ion fluence. XRD results show decrease and shift in main peak of irradiated PET. Surface roughness is found to decrease with increasing ion fluence.  相似文献   

8.
The samples of CR-39 polymer (TASTRAK, Bristol, England) were annealled thermally at various temperatures ranging from 100°C to 180°C for 1 hour, in air. FTIR spectroscopy reveals the structural degradation of CR-39 polymer due to thermal annealing above its glass transition temperature. Optical band gap of pristine and thermally annealed samples has been determined using UV-Visible absorption spectra. It has been observed that the optical band gap decreases continuously as a result of annealing.   相似文献   

9.
Commercially purchased CR-39 and PET polymers were irradiated by 100 MeV O7+ ions of varying fluences, ranging from 1×1011 to 1×1013 ions/cm2. The effects of swift heavy ions (SHI) on the structural, optical and chemical properties of CR-39 and PET polymers were studied using X-ray diffraction (XRD), UV-visible spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The XRD patterns of CR-39 show that the intensity of the peak decreases with increasing ion fluence, which indicates that the semicrystalline structure of polymer changes to amorphous with increasing fluences. The XRD patterns of PET show a slight increase in the intensity of the peaks, indicating an increase in the crystallinity. The UV-visible spectra show the shift in the absorbance edge towards the higher wavelength, indicating the change in band gap. Band gap in PET and CR-39 found to be decrease from 3.87 to 2.91 and 5.3-3.5 eV, respectively. The cluster size also shows a variation in the carbon atoms per cluster that varies from 42 to 96 in CR-39 and from 78 to 139 in PET. The FTIR spectra show an overall reduction in intensity of the typical bands, indicating the degradation of polymers after irradiation.  相似文献   

10.
The concentration of point defects in silicon samples bombarded by Ar ions with an energy of 30 keV with a dose of 1016 cm−2 is investigated using Rutherford backscattering combined with ion channeling. It is revealed that there is a variation of point defect concentration on the side of a sample opposite to the bombarded one. At the same time, an increase in the microhardness is observed there. These results are evidence in favor of the long-range effect under ion bombardment.  相似文献   

11.
Hydrophilic Ag nanostructures were synthesized by physical vapour deposition of 5 nm Ag thin films followed by irradiation with 1.5 keV Ar atoms. Optical absorbance measurements show a characteristic surface plasmon resonance absorption band in visible region. A blue-shift in absorbance from 532 to 450 nm is observed with increasing fluence from 1 × 1016 to 3 × 1016 atoms/cm2. Atomic force microscopy was performed for the pristine and irradiated samples to study the surface morphology. The atom beam irradiation induced sputtering and surface diffusion lead to the formation of plasmonic surface. Rutherford backscattering spectroscopy of the pristine and irradiated film indicates that metal content in the film decreases with ion fluence, which is attributed to the sputtering of Ag by Ar atoms. The contact angle measurement demonstrates the possibility of engineering the hydrophilicity by atom beam irradiation.  相似文献   

12.
l-arginine monohydrochloride monohydrate (LAHCl) single crystals have been implanted with 100 keV H+ ions at different ion fluence ranging from 1012 to 1015 ions/cm2. Implanted LAHCl single crystals have been investigated for property changes. Crystal surface and crystalline perfection of the pristine and implanted crystals were analyzed by atomic force microscope and high-resolution X-ray diffraction studies, respectively. Optical absorption bands induced by colour centers, refractive index and birefringence, mechanical stability and dielectric constant of implanted crystals were studied at different ion fluence and compared with that of pristine LAHCl single crystal.  相似文献   

13.

The commercially available solid state nuclear track detector CR-39 was bombarded with 100 MeV Si8+ ions. The Fourier transfonned infrared (FTIR) spectroscopic technique was employed for studying the changes in chemical properties whereas differential scanning calorimetry was used for studying the changes in thermal properties. It was observed that there were substantial chemical modifications in the sample, such as the breaking of C-0 single bonds and the formation of phenolic 0-H bonds. lt was further observed that CR-39 is amorphous and rigid and shows no glass transition temperature.  相似文献   

14.
Nanocrystalline thin films of Ni–Ti shape memory alloy are deposited on an Si substrate by the DC-magnetron co-sputtering technique and 120?keV Ag ions are implanted at different fluences. The thickness and composition of the pristine films are determined by Rutherford Backscattering Spectrometry (RBS). X-Ray diffraction (XRD), atomic force microscopy (AFM) and four-point probe resistivity methods have been used to study the structural, morphological and electrical transport properties. XRD analysis has revealed the existence of martensitic and austenite phases in the pristine film and also evidenced the structural changes in Ag-implanted Ni–Ti films at different fluences. AFM studies have revealed that surface roughness and grain size of Ni–Ti films have decreased with an increase in ion fluence. The modifications in the mechanical behaviour of implanted Ni–Ti films w.r.t pristine film is determined by using a Nano-indentation tester at room temperature. Higher hardness and the ratio of higher hardness (H) to elastic modulus (Er) are observed for the film implanted at an optimized fluence of 9?×?1015 ions/cm2. This improvement in mechanical behaviour could be understood in terms of grain refinement and dislocation induced by the Ag ion implantation in the Ni–Ti thin films.  相似文献   

15.
Samples of polystyrene (PS) have been irradiated with 64Cu (50 and 120 MeV) and 12C (70 MeV) ion beams (fluence=1011 to 1013 ions cm?2) in order to study the induced modifications using UV‐VIS and FTIR spectroscopy. UV spectra of irradiated samples reveal that the optical band gap decreases from 4.36 to 1.46 eV in PS. The decrease in optical band gap is more pronounced with the Cu‐ion beam due to high electronic energy loss as compared to the C ion beam. The effect of low energy (50 MeV) Cu ions on the optical properties of PS is larger than that due to high energy (120 MeV) Cu ions. The correlation between the optical band gap and the number of six member carbon rings inside the largest carbon clusters embedded in the network of polystyrene is discussed. FTIR spectra reveal the formation of hydroxyl, alkene, and alkyne groups in the Cu‐ion irradiated PS. Changes in the intensity of the absorption bands on irradiation with C‐ion relative to pristine samples have also been observed and are discussed.  相似文献   

16.
Makrofol-N polycarbonate was irradiated with carbon (70 MeV) and copper (120 MeV) ions to analyze the induced effects with respect to optical and structural properties. In the present investigation, the fluence for carbon and copper beams was kept in the range of 1×1011– 1×1013 ions/cm2 to study the swift heavy ion induced modifications. UV–VIS, FTIR and XRD techniques were utilized to study the induced changes. The analysis of UV–VIS absorption studies revealed that the optical energy gap was reduced by 17% on carbon irradiation, whereas the copper beam leads to a decrease of 52% at the highest fluence of 1×1013 ions/cm2. The band gap can be correlated to the number of carbon atoms, N, in a cluster with a modified Robertson's equation. In copper (120 MeV) ions irradiated polycarbonate, the number of carbon atoms in a cluster was increased from 63 to 269 with the increase of ion fluence from 0 to 1×1013 ions/cm2, whereas N is raised only up to 91 when the same polymer films were irradiated with carbon (70 MeV) ions under similar conditions. FTIR analysis showed a decrease in almost all characteristic absorption bands under irradiation. The formation of hydroxyl (? OH) and alkene (C?C) groups were observed in Makrofol-N at higher fluence on irradiation with both types of ions, while the formation alkyne end (R? C≡ CH) group was observed only after copper ions irradiation. The radii of the alkyne production of about 3.3 nm were deduced for copper (120 MeV) ions. XRD measurements show a decrease in intensity of the main peak and an increase of the average intermolecular spacing with the increase of ion fluence, which may be attributed to the structural degradation of Makrofol-N on swift ion irradiation.  相似文献   

17.
Yields of CO2 gas formation and the scissions at ether bonds have been determined along ion tracks in CR-39 plastics. Thin CR-39 films with thickness were irradiated by 130 MeV C-13 ions at 45 incidence up to , and then IR spectra were obtained without removing the samples from the vacuum chamber. The absorption band for CO2 was observed clearly around , whose absorbance increased proportional to the fluence up to 3×1012 ions/cm2 and then saturated. Using a mole absorption coefficient for gaseous CO2, the yield along the track was determined to be molecules/μm. This means that the G-value of CO2 formation in CR-39 was about 3.6 molecules/100 eV. The scission yield of ether bonds was found to be 11,000 scissions/μm. This corresponds to a G-value of about 5.5 scissions/100 eV. These values suggest that the parts between the two carbonate ester bonds in each repeat unit of CR-39 can be segmented into two CO2 and other small molecules along the nuclear tracks.  相似文献   

18.
Si was bombarded with size-selected 40 keV Ar cluster ions and positive secondary ions were measured using the time-of-flight technique under high and ultra-high vacuum (HV and UHV respectively) conditions. Si+ ions were main species detected under the incidence of 40 keV Ar cluster ions, and the yields of Si cluster ions such as Si4+ were also extremely high under both conditions. On the other hand, oxidized secondary ions such as SiO+ were detected with high intensity only under the HV condition. The yield ratios of oxidized ions decreased in UHV to less than 1% of their values in HV. The effect of residual gas pressure on Si cluster ion yields is relatively low compared to oxidized ions, and the UHV condition is required to obtain accurate secondary ion yields.  相似文献   

19.
Surface oxidation occurs if metals are bombarded with low-energy (1–5 keV) ions of a chemically active gas (oxygen) in vacuum. It is ascertained that ion bombardment leads to the generation of lower, intermediate, and higher oxides. The composition and thickness of an oxidized layer depend on the metal reactivity and the dose and energy of oxygen ions. The mechanism underlying the ion-beam oxidation of metal surfaces is proposed. Surface reduction is observed if higher oxides are bombarded with low-energy (1–5 keV) ions of inert gases (argon and helium) in vacuum. It is revealed that ion bombardment not only generates intermediate and higher oxides but sometimes gives rise to surface metallization. The composition and thickness of the reduced layer are determined by the oxide type, the kind of inert gases, and the dose and energy of bombardment. The mechanism describing the ion-beam reduction of higher metal oxide surfaces is proposed.  相似文献   

20.
ABSTRACT

Polycarbonate (PC) and polyethylene terephthalate (PET) thermoplastic polymer films were irradiated by low energy ion beams such as 100 keV Hydrogen (H+) ions and 350 keV Nitrogen (N+) ions at varied fluence from 1?×?1013 ions/cm2 to 5?×?1014 ions/cm2. The depth profile concentration of ions was calculated using Stopping and Range of Ions in Matter (SRIM) software code. Fourier Transform Infrared (FTIR) technique shows decrement in the intensity of peaks and disappearance of peaks mainly related to carbonyl stretching at 1770?cm?1 and C–C stretching at 1500?cm?1. Scanning electron microscopy (SEM) of irradiated polymers showed the formation of pores. X-ray diffraction (XRD) analysis has showed decrease in the intensity indicating the decrease in crystallinity after irradiation. Mechanical studies revealed that the molecular weight and microhardness decrease with increase in ion fluence due to increase in chain scission. The contact angle increased with increase in ion fluence indicating the hydrophobic nature of polymer after irradiation. Antibiofilm activity test of irradiated films shows resistance to Salmonella typhi (S. typhi) pathogen responsible for typhoid. The study shows that Nitrogen ion induces more damage compared to Hydrogen ions and PC films get more modified than PET films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号