首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The ferromagnetic shape memory alloy with nominal composition of Ni52.5Mn24.5Ga23(at%) was developed by the melt-spinning technique. The as-spun ribbon showed dominant L21 austenitic (cubic) structure with splitting of primary peak in the X-ray diffractogram indicating existence of a martensitic feature. The quenched-in martensitic plates were revealed from Transmission electron microscopy (TEM). Increase of magnetisation at low-temperature rise indicates martensite to austenite transformation and its reverse with a drop in magnetisation during cooling cycle. The martensite to austenite transformation can be made spontaneous at higher magnetic field.  相似文献   

2.
Diamond-like carbon (DLC) and Cr-doped diamond-like carbon layers were studied. DLC and Cr-DLC were deposited on silicon and titanium substrates (Ti-6Al-4V) by dual-pulsed laser ablation using two KrF excimer lasers and two targets (graphite and chromium). The composition was analyzed using wavelength-dependent X-ray spectroscopy. The Cr content increased from 2.2 to 17.9 at%. The topology and surface properties as roughness of layers were studied using scanning electron microscopy and atomic force microscopy. With the chromium concentration increased the roughness and the number of droplets. Carbon and chromium bonds were determined by Raman spectroscopy. With an increase in chromium content the I D/I G ratio increased. Mechanical properties of DLC films with various chromium content were evaluated. Hardness (reduced Young’s modulus) was determined by nanoindentation and reached of 51 GPa (309 GPa). Films adhesion was studied using scratch test and with concentration of chromium increased up to 20 N.  相似文献   

3.
Amorphous hydrogenated carbon (a-C:H) thin films deposited on a silicon substrate under various mixtures of methane-hydrogen gas by electron cyclotron resonance microwave plasma chemical vapor deposition (ECR-MPCVD) was investigated. Microstructure, surface morphology and mechanical characterizations of the a-C:H films were analyzed using Raman spectroscopy, atomic force microscopy (AFM) and nanoindentation technique, respectively. The results indicated there was an increase of the hydrogen content, the ratio of the D-peak to the G-peak (ID/IG) increased but the surface roughness of the films was reduced. Both hardness and Young's modulus increased as the hydrogen content was increased. In addition, the contact stress-strain analysis is reported. The results confirmed that the mechanical properties of the amorphous hydrogenated carbon thin films improved using a higher H2 content in the source gas.  相似文献   

4.
The formation of icosahedral phase by mechanical alloying of crystalline elemental powder of Al, Cu and Fe has been investigated. The effect of milling time on the formation of icosahedral phase of nominal composition of Al65Cu20Fe15 has been studied using the X-ray diffraction technique. Further studies have been carried out by scanning electron microscopy (SEM), energy-dispersive X-ray microanalysis (EDAX), particle size, magnetisation and ferromagnetic resonance studies. All these studies indicate that the icosahedral alloy shows soft ferromagnetic behaviour.  相似文献   

5.
The development of electronic devices based on Silicon Carbide (SiC) has been strongly limited by the difficulties in growing high quality crystalline bulk materials and films. We have recently elaborated a new technique for the synthesis of SiC on clean Si substrates by means of supersonic beams of C60: the electronic and structural properties of the film can be controlled by monitoring the beam parameters, i.e. flux and particles energy and aggregation state. SiC films were grown in Ultra High Vacuum on Si(111)-7×7, at substrates temperatures of 800 ° C, using two different supersonic beams of C60: He and H2 have been used as seeding gases, leading to particles energy of 5 eV and 20 eV, respectively. Surface characterisation was done in situ by Auger and X-Ray photoelectron spectroscopy, as well as by low energy electron diffraction and ex situ by atomic force microscopy technique. SiC films exhibited good structural and electronic properties, with presence of defects different from the typical triangular voids. Received 20 November 2001  相似文献   

6.
Alloys of Fe1? x C x were produced using combinatorial sputtering methods. The composition of the films as a function of position was determined using electron microprobe techniques and the results have shown that a composition range of about 0.35?<?x?<?0.75 was obtained. X-ray diffraction methods were employed to study the structure of the thin films and showed that all portions of the films were amorphous or nanostructured. Room temperature 57Fe Mössbauer spectroscopy was utilized to study the atomic environment around the Fe atoms. Hyperfine field distributions of ferromagnetic alloys, as extracted from the Mössbauer analysis, suggested the existence of two classes of Fe sites: (1) classes of Fe sites that have primarily Fe neighbours corresponding to a high-field component in the distribution and (2) classes of Fe sites that have a greater number of C neighbours, corresponding to a low-field component. The magnetic splitting decreased as a function of increasing carbon concentration and alloys with x greater than about 0.68 were primarily paramagnetic in nature. These spectra exhibited distributions of quadrupole splitting with mean splitting in excess of 1.0?mm/s. This indicates a higher degree of local asymmetry around the Fe sites than typically seen in other Fe-metalloid systems.  相似文献   

7.
An investigation of the physical properties of La0.8Sr0.2MnO3 single crystals grown by the molten zone technique is realized close to the metal-to-insulator transition temperature (TMI). In this paper, we review the effect of the structural defects through magnetotransport and local magnetic microstructures. From electron microscopy observations, some ‘nanocrack’ defects (i.e. defects at a nanometer scale) were found, essentially in the center part of the single crystals. At room temperature, magnetic force microscopy measurements have shown that the absence of defects allowed a magnetic ordering of the domains at the crystal edge, which is the best-crystallized region. In addition, the magnetization loops have permitted us to verify that the crystal was ferromagnetically weaker in the center. On analyzing the electrical resistivity data, we observed in the linear current regime a sensitive variation of the resistivity due to defects, by comparing the center and the edge of the material at TMI. Additionally, at strong current, non-linearity phenomena have been supposed to be related to local heating. Finally, we discuss the structural disorder effect on the relaxation of the ferromagnetic domains.  相似文献   

8.
Hydrothermally prepared as-grown low-dimensional nano-particles (NPs) have been characterized using UV–vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and electron dispersion spectroscopy (EDS). The uniformity of the nano-material was executed by the scanning electron microscopy, where the single phase of the nano-crystalline β-Fe2O3 was characterized using XRD techniques. β-Fe2O3 nanoparticles fabricated glassy carbon electrode (GCE) have improved chloroform-sensing performances in terms of electrical response (IV technique) for detecting analyte in liquid phase. The analytical performances were investigated, which showed that the better sensitivity, stability, and reproducibility of the sensor improved significantly by using Fe2O3 NPs thin-film on GCE. The calibration plot was linear (R = 0.9785) over the large range of 12.0 μM to 12.0 mM. The sensitivity was calculated as 2.1792 μA cm−2 mM−1 with a detection limit of 4.4 ± 0.10 μM in short response time (10.0 s).  相似文献   

9.
Compton to Rayleigh scattering intensity ratios (IC/IR) have been measured using X-rays with energy 17.44 keV for single-component materials with atomic number Z from 4 (Be) to 31 (Ga) and binary compounds of stoichiometric composition. The measurements have been performed using two optical schemes: an energy-dispersive X-ray fluorescence scheme with a molybdenum secondary target and wavelength-dispersive X-ray fluorescence one. The processing of the spectra was carried out by fitting with Pearson VII functions. For single-component and binary standards, the experimental dependence of the scattering intensity ratio on the atomic number was found to be the same. This confirms the additivity of the contribution of different atoms to the scattering. The dependence has a complex shape but is well described by the theoretical relationship for IC/IR with correction on the difference between Compton and Rayleigh radiation absorption coefficients. Two ranges of atomic number values are defined, in which the effective atomic number Zeff can be determined by the calibration method using this dependence: for Z from 4 to 7 with low error of ΔZeff =±0.15 and for Zeff from 10 to 18 with low error of ΔZeff =±0.69. A change in the shape of the Compton peak and an overestimated value of the of the Compton and Rayleigh peak intensity ratio when passing from a single-component scatterer (Al or Si) to their oxides Al2O3 or SiO2, respectively, have been revealed.  相似文献   

10.
Anti-reflection coatings of solar cells have been fabricated using different techniques. The techniques used include SiO2 thermal oxidation, ZnO/TiO2 sputtering deposition and porous silicon prepared by electrochemical etching. Surface morphology and structural properties of solar cells were investigated by using scanning electron microscopy and atomic forces microscopy. Optical reflectance was obtained by using optical reflectometer. I-V characterizations were studied under 80 mW/cm2 illumination conditions. Porous silicon was found to be an excellent anti-reflection coating against incident light when it is compared with another anti-reflection coating and exhibited good light-trapping of a wide wavelength spectrum which produced high efficiency solar cells.  相似文献   

11.
《Current Applied Physics》2014,14(3):264-268
We report a facile, size-controllable exfoliation process using an ultrasound-assisted liquid method to fabricate few-layer molybdenum disulfide (MoS2) nanosheets. The morphology, structure and size distribution of the nanosheets processed with different ultrasonic powers were examined by atomic force microscopy, Raman spectroscopy and dynamic light scattering. It was revealed that the size of nanosheets reduces and final yield increases with elevating ultrasonic power. Bulk and exfoliated MoS2 based thin film sensors are fabricated by a simple drop casting method on alumina substrates. Our sensors exhibit excellent sensitivity with very quick response and recovery speed to humidity gas. Comparative studies are carried out to draw up the size or ultrasonic power dependent sensing behavior.  相似文献   

12.
交流电流对铁基纳米晶丝巨磁阻抗效应形貌的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
李印峰  封素芹  王建勇 《物理学报》2011,60(3):37306-037306
本文研究了交流电流的大小(I =0.2—20 mA)和频率(f = 1—1 MHz)对具有横向畴结构的铁基纳米晶丝的巨磁阻抗效应形貌的影响.实验结果表明,样品的巨磁阻抗效应呈双峰特征,随着频率的增大,双峰的位置HHm向高场移动;但随着电流的增大,双峰的位置逐渐向中心(H = 0)收缩,甚至变成单峰位形.理论上一般认为,双峰的位置与横向各向异性场Hk相对应,即H< 关键词: 巨磁阻抗效应 交流电流 铁基纳米晶丝  相似文献   

13.
A simple dielectric barrier discharge(DBD) jet array was designed with a liquid electrode and helium gas.The characteristics of the jet array discharge and the preliminary polymerization with acrylic acid(AA) monomer were presented.The plasma reactor can produce a cold jet array with a gas temperature lower than 315 K,using an applied discharge power between 6 W and 30 W(V dis × I dis).A silk fibroin film(SFF) was modified using the jet array and AA monomer,and the treated SFF samples were characterized by atomic force microscopy(AFM),scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR),and contact angle(CA).The deposition rate of the poly acrylic acid(PAA) was able to reach 300 nm/min,and the surface roughness and energy increased with the AA flow rate.The FTIR results indicate that the modified SFF had more carboxyl groups(-COOH) than the original SFF.This latter characteristic allowed the modified SFF to immobilize more quantities of antimicrobial peptide(AP,LL-37) which inhibited the Escherichia coli(E.Coli) effectively.  相似文献   

14.
We present a study of magnetization measurements performed on the single crystals of YNi2B2C and LuNi2B2C. For both the compounds, we find flux jumps in magnetisation values in the respective field regions, where the structural transitions in the flux line lattice symmetry have been reported in these systems via the small angle neutron scattering experiments. The magnetisation hysteresis loops and the AC susceptibility measurements show pronounced peak effect as well as second magnetisation peak anomaly for both YNi2B2C and LuNi2B2C. Based on these results, a vortex phase diagram has been constructed for YNi2B2C forH∥c depicting different glassy phases of the vortex matter.  相似文献   

15.
WS2 nanosheets obtained through a simple sonication exfoliation method are employed as a hole‐extraction layer to improve the efficiency of organic photovoltaic cells (OPVs). A reduction in the wavenumber difference in the Raman spectra, the appearance of a UV absorption peak, and atomic force microscopy images indicate that WS2 nanosheets are formed through the sonication method. The power conversion efficiency (PCE) values of OPVs with and without untreated WS2 layers are both 1.84%. After performing a UV‐ozone (UVO) treatment on the WS2 surface for 15 min, the PCE increases to 2.4%. Synchrotron radiation photoelectron spectroscopy data show that the work function of WS2 increases from 4.9 eV to 5.1 eV upon UVO treat‐ ment, suggesting that the increase in the PCE value is caused by the band alignment. Upon inserting poly(3,4‐ethylenedioxythiophene):poly(styrene‐sulfonate) (PEDOT: PSS) between the WS2 and the active layer, the PCE value of the OPV increases to 3.07%, which is superior to that of the device employing only PEDOT:PSS (2.87%). Therefore, it is considered that the use of UVO‐treated WS2 is able to improve the performance of OPV cells. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
In this paper, we report that ruthenium is an active and efficient catalyst for growth of single-walled carbon nanotubes (SWNTs) by a chemical vapor deposition (CVD) process for the first time. High density random and horizontally superlong well-oriented SWNTs on substrate can be fabricated via CH4 or EtOH as carbon source under suitable conditions. Scanning and transition electron microscopy investigations, Raman spectroscopy and atomic force microscopy measurements show the tubular structure, the high crystallinity, and the properties of the grown nanotubes. The results show that the SWNTs from ruthenium have better structural uniformity with less defects and provides an alternative catalyst for SWNTs growth. The successful growth of SWNTs by Ru catalyst provides new experimental information for understanding the growth mechanism of SWNTs, which may be helpful for their controllable synthesis.  相似文献   

17.
In this paper, we proposed a novel and green approach for the synthesis of graphene nanosheets (GNS) and Pt nanoparticles-graphene nanosheets (Pt/GNS) hybrid materials, employing graphene oxide (GO) as precursor and sodium citrate as environmentally friendly reducing and stabilizing agent. The microstructures of GO and Pt/GNS were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), Raman spectroscopy, atomic force microscopy (AFM), X-ray diffraction (XRD) and electrochemical measurements. The results confirmed that the uniform size distribution of Pt nanoparticles on the surface of GNS without agglomerates could be easily obtained via using sodium citrate as reductant, moreover the Pt/GNS hybrids exhibited high electrochemical activity.  相似文献   

18.
The hydrogenated diamond‐like carbon (DLCH) film with 1‐µm thickness is deposited by direct hydrocarbon gas ion beam method on silicon wafer and annealed at 400 °C. Detailed Raman spectra feature are fitted from nine sets of different peak fitting functions, including Gaussian, Lorentzian and Breit‐Wigner‐Fano (BWF) functions. These fitting results obtained from a two‐peak combination show some specific variances on the G peak position, FWHMG and ID/IG ratio for as‐deposited and as‐annealed DLCH films. The most popular two‐peak fitting method with full Gaussian function tends to exhibit a higher ratio of the G peak position shift and higher ID/IG ratio than others fitting methods, the drastic difference among the most popular G (G) & G (D) and B (G) & L (D) schemes also have brought out in ID/IG ratio. However, for a more complex four‐peak Gaussian function fitting Raman spectra, the ID/IG ratio is close to that of a two‐peak fitting function with a mixture functions of BWF (G) and L (D). Furthermore, a series of systematic peak fitting procedures and comparisons of Raman spectra have been discussed in this study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
We describe the ultrasonic assisted preparation of barium stannate-graphitic carbon nitride nanocomposite (BSO-gCN) by a simple method and its application in electrochemical detection of 4-nitrophenol via electro-oxidation. A bath type ultrasonic cleaner with ultrasonic power and ultrasonic frequency of 100 W and 50 Hz, respectively, was used for the synthesis of BSO-gCN nanocomposite material. The prepared BSO-gCN nanocomposite was characterized by employing several spectroscopic and microscopic techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, fourier transform infra-red, field emission scanning electron microscopy, and high resolution transmission electron microscopy, to unravel the structural and electronic features of the prepared nanocomposite. The BSO-gCN was drop-casted on a pre-treated glassy carbon electrode (GCE), and their sensor electrode was utilized for electrochemical sensing of 4-nitrophenol (4-NP). The BSO-gCN modified GCE exhibited better electrochemical sensing behavior than the bare GCE and other investigated electrodes. The electroanalytical parameters such as charge transfer coefficient (α = 0.5), the rate constant for electron transfer (ks = 1.16 s−1) and number of electron transferred were calculated. Linear sweep voltammetry (LSV) exhibited increase in peak current linearly with 4-NP concentration in the range between 1.6 and 50 μM. The lowest detection limit (LoD) was calculated to be 1 μM and sensitivity of 0.81 μA μM−1 cm−2. A 100-fold excess of various ions, such as Ca2+, Na+, K+, Cl, I, CO32−, NO3, NH4+ and SO42− did not able to interfere with the determination of 4-NP and high sensitivity for detecting 4-NP in real samples was achieved. This newly developed BSO-gCN could be a potential candidate for electrochemical sensor applications.  相似文献   

20.
Systematic variation in the high temperature stability of nanocrystalline anatase powders prepared by chemical vapour synthesis (CVS) using titanium (IV) isopropoxide under varying flow rates of oxygen and helium was obtained by progressively shifting the decomposition product from C3H6 to CO2. The as-synthesised powders were characterised by high temperature X-ray diffraction (HTXRD), simultaneous thermo-gravimetric analyses (STA), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). It was observed that the anatase to rutile transformation temperature progressively increased for samples synthesised at higher O2/He flow rate ratios. The improved anatase stability was attributed to the presence of incorporated carbon within the titania structure and confirmed by a high temperature carbon desorption peak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号