首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The mechanical properties and the electrical and thermal conductivity of composites based on an epoxy polymer (EP) filled with dispersed copper (Cu) and nickel (Ni) were studied. It was shown that the electrical conductivity of the composites demonstrated percolation behavior with the values of the percolation threshold being 9.9 and 4.0?vol.% for the EP-Cu and EP-Ni composites, respectively. Using the Lichtenecker model, the thermal conductivity of the dispersed metal phase in the composites, λf, was estimated as being 35?W/mK for Cu powder and 13?W/mK for Ni powder. It was shown that introduction of the filler in EP led to a decrease in the intensity of the mechanical loss tangent (tan δ) peak that was caused by the existence of an immobilized polymer layer around the filler particles which did not contribute to mechanical losses. Using several models the thickness of this layer, ΔR, was estimated. The concept of an “excluded volume” of the polymer, Vex, i.e. the volume of the immobilized polymer layer, which does not depend on the particle size and is determined solely by the value of the interaction parameter, B, was proposed.  相似文献   

2.
介绍了目前解决W/Cu连接界面缓解热应力的方法——添加适配层。在对不同适配层进行分析后,选出最佳W/Cu适配层,再对W/Cu适配层进行结构优化分析,得出选用W/Cu功能梯度材料作为适配层具有足够的结合强度,而且良好的导热性能能有效地缓解热应力。此外,重点阐述了目前成功的制备的W/Cu功能梯度材料用作W/Cu第一壁材料的适配层的常用方法。最后,对W/Cu功能梯度材料用作适配层解决W/Cu第一壁材料连接界面的问题做出了总结和展望。  相似文献   

3.
We have performed a transmission electron microscopy study, using weak beam imaging, of the interface dislocation arrays that form initially at the (001) Ni–Cu interface during coherency loss. Interface dislocations were absent in the 2.5?nm Ni/100?nm Cu bilayers, but were present in the 3.0?nm Ni samples, indicating that the critical Ni film thickness for coherency loss is between 2.5 and 3?nm. The key features of the interface dislocation structure at the onset of coherency loss are: (i) the majority of interface dislocations are 60° dislocations, presumably formed by glide of threading dislocations in the coherently stressed Ni layer, and have Burgers vector in the {111} glide plane; (ii) the interface contained approximately 5% Lomer edge dislocations, with Burgers vector in the {001} interface plane, and an occasional Shockley partial dislocation and (iii) isolated segments of interface dislocations terminating at the surface are regularly observed. Possible mechanisms that lead to these dislocation configurations at the interface are discussed. This experimental study shows that near the critical thickness, accumulation of interface dislocations occurs in a somewhat stochastic fashion with favourable regions where coherency is first lost.  相似文献   

4.
基于准连续介质多尺度模拟方法研究了Ni/Cu双层薄膜初始压痕塑性的原子机制,结果主要包括:(1)当Ni晶体层厚度小于10nm时,随着Ni晶体层厚度的减少,薄膜弹性极限所对应的临界接触力逐渐降低,即Ni/Cu薄膜随Ni晶体层厚度减小而变软;(2)压头下方晶格Shockley分位错的开动、界面位错的分解、以及界面位错与晶格位错的相互作用是Ni/Cu薄膜初始塑性的微观原子机制,(3)根据模拟结果观察和位错弹性理论计算,承载初始塑性的界面位错数目变少是Ni/Cu薄膜软化的主要原子机制.本文研究结果能够为异质界面力学行为研究提供有益参考.  相似文献   

5.
Layered composites of Cu/Nb achieve very high strength levels when the individual layer thicknesses are 1–10?nm, attributable to the interfaces acting as barriers to slip. Atomistic models of Cu/Nb bilayers were used to explore the origins of this resistance. The models clearly show that dislocations placed near an interface experience an attraction toward the interface, regardless of the sign of the Burgers vector or the material in which it is placed. This attraction is caused by shear of the interface induced by the stress field of the dislocation. Furthermore, the dislocation, upon reaching the interface, is absorbed by it in the sense that the core spreads within the interface. We develop a model, using a fractional dislocation approach, which provides an estimate of the strength of the attraction as a function of distance from the interface and also the dependence of the interaction on the type of dislocation. A screw dislocation is much more effective in shearing the interface, and the resulting attractive forces on screws are larger than for edge dislocations.  相似文献   

6.
N. M. Ghoniem  X. Han 《哲学杂志》2013,93(24):2809-2830
Line integral forms for the elastic field of dislocations in anisotropic, multilayer materials are developed and utilized in Parametric Dislocation Dynamics (PDD) computer simulations. Developed equations account for interface image forces on dislocations as a result of elastic modulus mismatch between adjacent layers. The method is applied to study dislocation motion in multilayer thin films. The operation of dislocation sources, dislocation pileups, confined layer slip (CLS), and the loss of layer confinement are demonstrated for a duplex Cu/Ni system. The strength of a thin film of alternating nanolayers is shown to increase with decreasing layer thickness, and that the maximum strength is determined by the Koehler barrier in the absence of coherency strains. For alternating Cu/Ni nanolayers, the dependence of the strength on the duplex layer thickness is found to be consistent with experimental results, down to a layer thickness of ≈10nm.  相似文献   

7.
The irradiation effect of 1 MeV C+ on the interface and magnetic anisotropy of epitaxial Cu/Ni system with a perpendicular magnetic anisotropy was investigated by using magneto-optical Kerr effects, grazing incident diffraction and X-ray reflectivity. The magnetic easy-axis was altered from the direction along the surface normal to in-plane and the strain in the Ni layer was relaxed after ion irradiation. Though the interface between the top Cu layer and the Ni layer becomes rough, the contrast of electron densities of Cu and Ni layer increases and the grain-growth occurs during ion irradiation. These phenomena arise from thermo-chemical driving force, i.e. heat of formation, which may be a crucial factor in determining the interface shape in the case of indirect energy transfer mechanism. Therefore, the change of the magnetic anisotropy of the Ni/Cu system after ion irradiation is not due to the formation of the intermixed layer at the interface. The ion irradiation effects on the grain-growth and enhancement of the electronic contrast between Ni and Cu are explained by the interfacial atomic movement caused by thermo-chemical driving force.  相似文献   

8.
Epitaxial [NiFe/Cu/Co(/Cu)] films have been grown on Si(100)/Cu substrates using an ultrahigh vacuum evaporation method. Magnetoresistance (MR) and magnetization were measured at room temperature with maximum applied field, 40 kA/m. The (100) oriented [NiFe(3 nm)/Cu(6 nm)/Co(3 nm)/Cu(6 nm)] × 10 multilayers showed a sharply peaked MR curve (when the external field was applied along [011] direction) due to magnetization rotation of free NiFe layers separated from Co layers with thick Cu layers. Furthermore the interposition of a Ag layer in the Cu layer reduced the couplings between ferromagnetic layers and improved the sensitivity of the [NiFe/Cu/Co(/Cu)] film. Si(100)/Cu(5 nm)/[Co(3 nm)/Cu(2.4 nm)/Ag(0.2 nm)/Cu(2.4 nm)/NiFe(3 nm)/Cu(2.4 nm)/Ag(0.2 nm)/Cu(2.4 nm)] × 10 multilayers showed a resistivity change of about 8.2% per kA/m (12 Oe).  相似文献   

9.
In situ annealing within a neutron beam line and ex situ annealing followed by transmission electron microscopy were used to study the thermal stability of the texture, microstructure, and bi-metal interface in bulk nanolamellar Cu/Nb composites (h?=?18?nm individual layer thickness) fabricated via accumulative roll bonding, a severe plastic deformation technique. Compared to the bulk single-phase constituent materials, the nanocomposite is two orders of magnitude higher in hardness and significantly more thermally stable, e.g., no observed recrystallization in Cu at temperatures as high as 85% of the melting temperature. The nanoscale h?=?18?nm individual layer thickness is maintained up to 500°C, the lamellar structure thickens but is maintained up to 700°C, and recrystallization is suppressed even up to 900°C. With increasing temperature, the texture sharpens, and among the interfaces found in the starting material, the {112}Cu?||?{112}Nb interface with a Kurdjumov-Sachs orientation relationship shows the greatest thermal stability. Our results suggest that thickening of the individual layers under heat treatment coincides with thermally driven removal of energetically unfavorable bi-metal interfaces. Thus, we uncover a temperature regime that maintains the lamellar structure but alters the interface distribution such that a single, low energy, thermally stable interface prevails.  相似文献   

10.
Poly(ether ether ketone)/carbon fiber composites (PEEK/Cf) were chemical etched by Cr2O3/H2SO4 solution, electroless plated with copper and then electroplated with nickel. The effects of chemical etching time and temperature on the adhesive strength between PEEK/Cf and Cu/Ni layers were studied by thermal shock method. The electrical resistance of some samples was measured. X-ray photoelectron spectroscopy (XPS) was used to analyze the surface composition and functional groups. Scanning electron microscopy (SEM) was performed to observe the surface morphology of the composite, the chemical etched sample, the plated sample and the peeled metal layer. The results indicated that CO bond increased after chemical etching. With the increasing of etching temperature and time, more and more cracks and partially exposed carbon fibers appeared at the surface of PEEK/Cf composites, and the adhesive strength increased consequently. When the composites were etched at 60 °C for 25 min and at 70-80 °C for more than 15 min, the Cu/Ni metallization layer could withstand four thermal shock cycles without bubbling, and the electrical resistivity of the metal layer of these samples increased with the increasing of etching temperature and time.  相似文献   

11.
Embedded-atom method potentials and atomistic models of coherent (010) interfaces were used to study slip across interfaces in cube-on-cube oriented Cu/Ni nanolayered materials. (111) disconnections form during slip across Cu–Ni interfaces and become significant barriers to continued deformation. A significant barrier exists for the flat coherent interface owing to the large coherency stresses in the Cu/Ni layers that must be overcome by applied stresses but, once these have been overcome, interface transection occurs readily. A disconnection adds an additional barrier because of a residual dislocation with a Burgers vector magnitude equal to the difference between b Cu and b Ni. This barrier depends on the position of the disconnection relative to the glide plane of the transecting glide dislocation and on the disconnection height. Disconnections cause work hardening that prevents shear band formation during deformation and encourages homogeneous shear processes. Disconnection energies are shown to be relatively small and to depend on the disconnection type and size.  相似文献   

12.

The objective of this research was to study the evolution of crystallographic texture in electrodeposited Ni/Cu laminated nanostructures. Thick films (14-40 µm) consisting of nickel and copper nanolayers (7-27 nm) were fabricated on annealed polycrystalline copper substrates using an electodeposition technique. The microstructure of the deposits was varied by changing the deposition time of each layer and the electrolyte temperature. X-ray diffraction, transmission electron microscopy and scanning electron microscopy were applied to characterize the deposits. Three microstructural behaviours were observed. The deposit with a very fine bilayer thickness (7 nm) was composed of coherent layers parallel to the substrate surface. This deposit replicated the cube orientation of the substrate and showed a strong ?100? texture throughout the thickness of the deposit. An increase in the bilayer thickness (17 and 27 nm) caused a change in the texture from ?100? on the substrate side to ?111? on the solution side. This change in texture is suggested to be associated with a change in the deposition front orientation from {100} to {110} and the subsequent twinning of the cube-oriented crystals. A decrease in the electrolyte temperature inhibited faceting of the interface and hence no twinning was observed.  相似文献   

13.
The influence of the Cu capping layer thickness on the spin pumping effect in ultrathin epitaxial Co and Ni films on Cu(0 0 1) was investigated by in situ ultrahigh vacuum ferromagnetic resonance. A pronounced increase in the linewidth is observed at the onset of spin pumping for capping layer thicknesses dCu larger than 5 ML, saturating at dCu = 20 ML for both systems. The spin mixing conductance for Co/Cu and Ni/Cu interfaces was evaluated.  相似文献   

14.
Magnetization-induced optical second harmonic generation (MSHG) from the exchange-biased CoO/Cu-(X)/Fe multilayer shows the presence of pinned uncompensated spins at the CoO/Cu interface. For increasing Cu spacer thickness, the exchange bias measured via the hysteresis loop shift diminishes and disappears at X = 3.5 nm, while the MSHG signal still shows a strong magnetic contribution from the CoO interface. This indicates that the magnetic interaction between Fe and CoO layers is sufficiently strong to induce order in the antiferromagnetic layer even at a spacer thickness for which there is no observable hysteresis loop shift.  相似文献   

15.
熊辉辉  刘昭  张恒华  周阳  俞园 《物理学报》2017,66(16):168101-168101
为了探索不同合金元素对Nb C异质形核的影响,本文利用第一性原理研究了合金元素X(X=Cr,Mn,Mo,W,Zr,V,Ti,Cu和Ni)对ferrite(100)/Nb C(100)界面性质的影响,并且分析了上述合金元素掺杂前后界面的黏附功、界面能和电子结构.研究结果表明,Cr,V和Ti掺杂的界面具有负的偏聚能,说明它们容易偏聚到ferrite/Nb C界面,但Mn,W,Mo,Zr,Cu和Ni却难以偏聚到此界面.当Mn,Zr,Cu和Ni取代界面处的Fe原子后,界面的黏附强度降低,即这些合金减弱铁素体在Nb C上的形核能力.然而Cr,W,Mo,V和Ti引入界面后,其黏附功比掺杂前的界面要大,且界面能均降低,即提高了界面的稳定性.因此,W,Mo,V和Ti,尤其是Cr,能够有效地促进铁素体形核和细化晶粒.电子结构分析表明,Zr和Cu引入界面后,界面处的Zr,Cu原子和C原子的相互作用变弱;然而Cr和W引入界面后,Cr,W和C原子之间形成了很强的非极性共价键,提高了ferrite/Nb C界面的结合强度.  相似文献   

16.
K.Y. Yu  C. Sun  Y. Chen  Y. Liu  H. Wang  M.A. Kirk 《哲学杂志》2013,93(26):3547-3562
Monolithic Ag and Ni films and Ag/Ni multilayers with individual layer thickness of 5 and 50?nm were subjected to in situ Kr ion irradiation at room temperature to 1 displacement-per-atom (a fluence of 2?×?1014?ions/cm2). Monolithic Ag has high density of small loops (4?nm in diameter), whereas Ni has fewer but much greater loops (exceeding 20?nm). In comparison, dislocation loops, ~4?nm in diameter, were the major defects in the irradiated Ag/Ni 50?nm film, while the loops were barely observed in the Ag/Ni 5?nm film. At 0.2?dpa (0.4?×?1014?ions/cm), defect density in both monolithic Ag and Ni saturated at 1.6 and 0.2?×?1023/m3, compared with 0.8?×?1023/m3 in Ag/Ni 50?nm multilayer at a saturation fluence of ~1?dpa (2?×?1014?ions/cm2). Direct observations of frequent loop absorption by layer interfaces suggest that these interfaces are efficient defect sinks. Ag/Ni 5?nm multilayer showed a superior morphological stability against radiation compared to Ag/Ni 50?nm film.  相似文献   

17.
We present a quantitative surface x-ray analysis of the buried Ni/Cu(001) interface structure after deposition of 3 and 5 monolayers of Ni at room temperature. Interface mixing is found where 27+/-10% of top layer Cu atoms are exchanged by Ni. Atomic scale simulations reveal a kinetic pathway for the Ni/Cu-exchange process and explain the observed limited degree of intermixing. A disperse distribution of Ni within the Cu surface with a preferential Ni-Ni separation of 3-4 nearest neighbor distances is determined.  相似文献   

18.
19.
We report on the first observation of a pronounced reentrant superconductivity phenomenon in a superconductor/ferromagnet layered system. The results were obtained using a superconductor/ferromagnetic-alloy bilayer of Nb/Cu(1-x)Ni(x). The superconducting transition temperature T(c) drops sharply with increasing thickness dCuNi) of the ferromagnetic layer, until complete suppression of superconductivity is observed at d(CuNi) approximately equal to 4 nm. Increasing the Cu(1-x)Ni(x) layer thickness further, superconductivity reappears at d(CuNi) > or =13 nm. Our experiments give evidence for the pairing function oscillations associated with a realization of the quasi-one-dimensional Fulde-Ferrell-Larkin-Ovchinnikov-like state in the ferromagnetic layer.  相似文献   

20.
Hierarchical yolk–shell nanostructure (NiO/Ni/GN@Air@NiO/Ni/GN) derived from Ni‐based metal–organic frameworks (Ni‐MOFs) is synthesized by solvothermal reactions. After successive carbonization and oxidation treatments, hierarchical NiO/Ni nanocrystals covered with a graphene shell are obtained with the yolk–shell nanostructure intact. The NiO/Ni/GN@Air@NiO/Ni/GN composites are characterized by X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results indicate that the NiO/Ni/GN@Air@NiO/Ni/GN composites exhibit superior electromagnetic wave absorption properties. A minimum reflection loss (RLmin) of ?34.5 dB is obtained at 17.2 GHz with the thin thickness of 1.7 mm. In addition, the best microwave absorption properties are achieved with a 2.0 mm absorber layer (RLmin = ?22.5 dB, bandwidth of 6.0 GHz). The outstanding absorption ability may arise from the unique yolk–shell structure and nanoporous carbon, which can tune the dielectric of the NiO/Ni/GN@Air@NiO/Ni/GN composites to acquire good impedance matching. Moreover, the interspaces can induce interfacial polarization and multiple reflections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号