首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The effects of MHD free convection and mass transfer are taken into account on the flow past oscillating infinite coaxial vertical circular cylinder. The analytical expressions for velocity, temperature and concentration of the fluid are obtained by using perturbation technique.
Einwirkungen von freier MHD-Konvektion und Stoffübertragung auf eine Strömung nach einem schwingenden unendlichen koaxialen vertikalen Zylinder
Zusammenfassung Die Einwirkungen der freien MHD-Konvektion und Stoffübertragung auf eine Strömung nach einem schwingenden, unendlichen, koaxialen, vertikalen Zylinder wurden untersucht. Die analytischen Ausdrücke der Geschwindigkeit, Temperatur und Fluidkonzentration sind durch die Perturbationstechnik erhalten worden.

Nomenclature C p Specific heat at constant temperature - C the species concentration near the circular cylinder - C w the species concentration of the circular cylinder - C the species concentration of the fluid at infinite - * dimensionless species concentration - D chemical molecular diffusivity - g acceleration due to gravity - Gr Grashof number - Gm modified Grashof number - K thermal conductivity - Pr Prandtl number - r a ,r b radius of inner and outer cylinder - a, b dimensionless inner and outer radius - r,r coordinate and dimensionless coordinate normal to the circular cylinder - Sc Schmidt number - t time - t dimensionless time - T temperature of the fluid near the circular cylinder - T w temperature of the circular cylinder - T temperature of the fluid at infinite - u velocity of the fluid - u dimensionless velocity of the fluid - U 0 reference velocity - z,z coordinate and dimensionless coordinate along the circular cylinder - coefficient of volume expansion - * coefficient of thermal expansion with concentration - dimensionless temperature - H 0 magnetic field intensity - coefficient of viscosity - e permeability (magnetic) - kinematic viscosity - electric conductivity - density - M Hartmann number - dimensionless skin-friction - frequency - dimensionless frequency  相似文献   

2.
The effect of polymer concentration on drag reduction was studied experimentally with diluted water solutions of polyvinylacetate in a 2.4 cm I. D. pipe. The instantaneous local velocities of the velocity fields were measured by a one-channel differential laser-Doppler anemometer DISA Mark II, with forward scattering. Concentrations of water-polyvinylacetate over the range from 10 to 2,000 ppm were used. The drag reduction coefficient is proportional to the concentration and hydrolysis degree of the saponificated polyvinylacetate (PVAC) employed. A mechanical degradation in the turbulent shear flow was not observed.List of Symbols a 1 coefficient in Eq. (3) - a 2 coefficient in Eq. (3) - D pipe diameter - k coefficient in modified Blasius equation for friction factor - K consistency parameter given by (1 b) - K i coefficients in Eq. (5) - m coefficient in Eq. (3) - n flow index Eq. (1a), coefficient in Eq. (3) - n + dimensionless position parameter defined by Eq. (4) - N + position parameter defined by Eq. (7) - r radial distance from the pipe center - R pipe radius - Re Reynolds number - Re g generalized Reynolds number, Eq. (9) - t temperature - u + dimensionless local velocity, /u * - u * dynamic friction velocity, w(/8) 0,5 - U + dimensionless local mean velocity defined by Eq. (6) - time-averaged local velocity - m time-averaged local velocity at the pipe center - w average velocity over the cross-section of the pipe - X concentration of polymer in water, w · ppm - y distance from the pipe wall - y + dimensionless distance from the pipe wall, y u * / or as in Eq. (8) - friction factor in drag reduction flow - 0 friction factor of pure water - degree of drag reduction - viscosity - standard deviation A version of this paper was presented at the 9th National Symposium on the measurement of turbulence with laser Doppler and other anemometers, Bratislava, CSSR, 1986  相似文献   

3.
The steady periodic temperature distribution in an infinitely long solid cylinder crossed by an alternating current is evaluated. First, the time dependent and non-uniform power generated per unit volume by Joule effect within the cylinder is determined. Then, the dimensionless temperature distribution is obtained by analytical methods in steady periodic regime. Dimensionless tables which yield the amplitude and the phase of temperature oscillations both on the axis and on the surface of copper or nichrome cylindrical electric resistors are presented.
Wärmeleitung in einem stromdurchflossenen Zylinder unter Berücksichtigung des Skin-Effektes
Zusammenfassung Es wird die periodische Temperaturverteilung für den eingeschwungenen Zustand in einem unendlich langen, von Wechselstrom durchflossenen Vollzylinder ermittelt. Zuerst erfolgt die Bestimmung der zeitabhängigen, nichgleichförmigen Energiefreisetzung pro Volumeneinheit des Zylinders infolge Joulescher Wärmeentwicklung und anschließend die Ermittlung der quasistationären Temperaturverteilung auf analytischem Wege. Amplitude und Phasenverzögerung der Temperaturschwingungen werden für die Achse und die Oberfläche eines Kupfer- oder Nickelchromzylinders tabellarisch in dimensionsloser Form mitgeteilt.

Nomenclature A integration constant introduced in Eq. (2) - ber, bei Thomson functions of order zero - Bi Biot numberhr 0/ - c speed of light in empty space - c 1,c 2 integration constants introduced in Eq. (46) - c p specific heat at constant pressure - E electric field - E z component ofE alongz - E time independent part ofE, defined in Eq. (1) - f function ofs and defined in Eq. (11) - g function ofs and defined in Eq. (37) - h convection heat transfer coefficient - H magnetic field - i imaginary uniti=(–1)1/2 - I electric current - I eff effective electric currentI eff=I/21/2 - Im imaginary part of a complex number - J n Bessel function of first kind and ordern - J electric current density - q g power generated per unit volume - time average of the power generated per unit volume - time averaged power per unit length - r radial coordinate - R electric resistance per unit length - r 0 radius of the cylinder - Re real part of a complex number - s dimensionless radial coordinates=r/r 0 - s, s integration variables - t time - T temperature - time averaged temperature - T f fluid temperature outside the boundary layer - time average of the surface temperature of the cylinder - u, functions ofs, and defined in Eqs. (47) and (48) - W Wronskian - x position vector - x real variable - Y n Bessel function of second kind and ordern - z unit vector parallel to the axis of the cylinder - z axial coordinate - · modulus of a complex number - equal by definition Greek symbols amplitude of the dimensionless temperature oscillations - electric permittivity - dimensionless temperature defined in Eq. (16) - 0, 1, 2 functions ofs defined in Eq. (22) - thermal conductivity - dimensionless parameter=(2)1/2 - magnetic permeability - 0 magnetic permeability of free space - function of defined in Eq. (59) - dimensionless parameter=c p/() - mass density - electric conductivity - dimensionless time=t - phase of the dimensionless temperature oscillations - function ofs:= 1+i 2 - angular frequency - dimensionless parameter=()1/2 r 0  相似文献   

4.
An analysis is presented for fully developed laminar convective heat transfer in a pipe provided with internal longitudinal fins, and with uniform outside wall temperature. The fins are arranged in two groups of different heights. The governing equations have been solved numerically to obtain the velocity and temperature distributions. The results obtained for different pipe-fins geometries show that the fin heights affect greatly flow and heat transfer characteristics. Reducing the height of one fin group decreases the friction coefficient significantly. At the same time Nusselt number decreases inappreciably so that such reduction is justified. Thus, the use of different fin heights in internally finned pipes enables the enhancement of heat transfer at reasonably low friction coefficient.Nomenclature Af dimensionless flow area of the finned pipe, Eq. (8) - af flow area of the finned pipe - Cp specific heat at constant pressure - f coefficient of friction, Eq. (12) - H1, H2 dimensionless fin height h1/ro h2/ro - h1, h2 fin heights - average heat transfer coefficient at solid-fluid interface - KR fin conductance parameter, ks/kf - kf thermal conductivity of fluid - ks thermal conductivity of fin - l pipe length - mass flow rate - N number of fins - Nu Nusselt number, Eqs. (15) and (16) - P pressure - Q total heat transfer rate at solid fluid interface - Qf1, Qf2 heat transfer rate at fin surface - qw average heat flux at pipe-wall, Q/(2 rol) - R dimensionless radial coordinate r/ro - Re Reynolds Number, Eq. (13) - r radial coordinate - ro radius of pipe - r1, r2 radii of fin tips - T temperature - Tb bulk temperature - U dimensionless velocity, Eq. (2) - Ub dimensionless bulk velocity - uz axial velocity - z axial coordinate - angle between the flanks of two adjacent fins - half the angle subtended by a fin - angle between the center-lines of two adjacent fins - angular coordinate - dynamic viscosity - density - dimensionless temperature, Eq. (6) - b dimensionless bulk temperature  相似文献   

5.
Expressions are obtained for the pressure distribution in an externally pressurised thrust bearing for the condition when one bearing surface is rotated. The influence of centripetal acceleration and the combined effect of rotational and radial inertia terms are included in the analysis. Rotation of the bearing causes the lubricant to have a velocity component in an axial direction towards the rotating surface as it spirals radially outwards between the bearing surfaces. This results in an increase in the pumping losses and a decrease in the load capacity of the bearing. A further loss in the performance of the bearing is found when the radial inertia term, in addition to the rotational inertia term is included in the analysis.Nomenclature r, z, cylindrical co-ordinates - V r, V , V z velocity components in the r, and z directions respectively - U, X, W representative velocities - coefficient of viscosity - p static pressure at radius r - p mean static pressure at radius r - Q volume flow per unit time - 2h lubricant film thickness - density of the lubricant - r 2 outside radius of bearing = D/2 - angular velocity of bearing - R dimensionless radius = r/h - P dimensionless pressure = h 3 p/Q - Re channel Reynolds number = Q/h  相似文献   

6.
Barletta  A.  Zanchini  E. 《Heat and Mass Transfer》1994,29(5):285-290
The non-uniform heat generation in a cylindrical resistor crossed by an alternating electric current is considered. The time averaged and dimensionless temperature distribution in the resistor is analytically evaluated. Two dimensionless functions are reported in tables which allow one to determine the time averaged temperature field for arbitrarily chosen values of the physical properties and of the radius of the resistor, of the electric current frequency, of the Biot number and of either the power generated per unit length or the effective electric current.
Zeitliche Temperaturverteilung in einem zylinderförmigen Wechselstromwiderstand
Zusammenfassung Es wird ungleichförmige Wärmeerzeugung in einem mit Wechselstrom belasteten Widerstand unterstellt, woraus sich die darin einstellende, zeitlich gemittelte, dimensionslose Temperaturverteilung analytisch berechnen läßt. Zwei tabellierte dimensionslose Funktionen gestatten die Bestimmung dieser Temperaturverteilung für beliebige Werte der Stoff- und Feldparameter, des Widerstandhalbmessers, der elektrischen Frequenz, der Biot-Zahl, sowie der erzeugten Leistung pro Längeneinheit oder des effektiven Stroms.

Nomenclature A intregration constant introduced in Eq. (15) - Bi Biot numberhr 0/ - c speed of light in empty space - c p specific heat at constant pressure - E electric field - E z component ofE alongz - E amplitude of the electric field oscillations - electric permittivity - f function ofs and defined in Eq. (22) - function of defined in Eq. (45) - g function ofs and defined in Eq. (34) - h convection heat transfer coefficient - H magnetic field - i imaginary uniti=–1 - I electric current - I eff effective electric currentI eff=I/2 - Im imaginary part of a complex number - J current density - J n Bessel function of first kind and ordern - thermal conductivity - magnetic permeability - 0 magnetic permeability of free space - q g power generated per unit volume - time average of the power generated per unit volume - Q time averaged power per unit length - r radial coordinate - R electric resistance per unit length - r 0 radius of the cylinder - Re real part of a complex number - mass density - s dimensionless radial coordinates=r/r 0 - s,s integration variables - electric conductivity - t time - T temperature - time averaged temperature - T f fluid temperature outside the boundary layer - time average of the surface temperature of the cylinder - dimensionless temperature defined in Eq. (27) - x position vector - x arbitrary real variable - x integration variable - Y 0 Bessel function of second kind and order 0 - z axial coordinate - z unit vector parallel to the axis of the cylinder - angular frequency - dimensionless parameter =r0 - · modulus of a complex number - equal by definition  相似文献   

7.
The theory of a vibrating-rod viscometer   总被引:3,自引:0,他引:3  
The paper presents a complete theory for a viscometer based upon the principle of a circular-section rod, immersed in a fluid, performing transverse oscillations perpendicular to its axis. The theory is established as a result of a detailed analysis of the fluid flow around the rod and is subject to a number of criteria which subsequently constrain the design of an instrument. Using water as an example it is shown that a practical instrument can be designed so as to enable viscosity measurement with an accuracy of ±0.1%, although it is noted that many earlier instruments failed to satisfy one or more of the newly-established constraints.Nomenclature A, D constants in equation (46) - A m , B m , C m , D m constants in equations (50) and (51) - A j , B j constants in equation (14) - a j + , a j wavenumbers given by equation (15) - C f drag coefficient defined in equation (53) - c speed of sound - D b drag force of fluid b - D 0 coefficient of internal damping - E extensional modulus - f(z) initial deformation of rod - f(), F m () functions of defined in equation (41) - F force in the rod - force per unit length near t=0 - F dimensionless force per unit length near t=0 - g m amplitude of transient force - G modulus of rigidity - h, h* functions defined by equations (71) and (72) - H functions defined by equation (69) and (70) - I second moment of area - I 0,1, J 0,1, K 0,1 modified Bessel functions - k, k functions defined in equations (2) - L half-length of oscillator - Ma Mach number - m b added mass per unit length of fluid b - m s mass per unit length of solid - n j eigenvalue defined in equations (15) and (16) - R radius of rod - R c radius of container - r radial coordinate - T tension - T visc temperature rise due to heat generation by viscous dissipation - t time - v r , v radial and angular velocity components - y lateral displacement - y 0 initial lateral displacement - y 1, y 2 successive maximum lateral displacement - z axial coordinate - dimensionless tension - dimensionless mass of fluid - dimensionless drag of fluid - amplification factor - logarithmic decrement in a fluid - a , b logarithmic decrement in fluids a and b - 0 logarithmic decrement in vacuo - j logarithmic decrement in mode j in a fluid - spatial resolution of amplitude - v voltage resolution - r, , , s, , increments in R, , , s , , - dimensionless amplitude of oscillation - dimensionless axial coordinate - angular coordinate - f thermal conductivity of fluid - viscosity of fluid - viscosity of fluid calculated on assumption that * - a , b viscosity of fluids a and b - m constants in equation (10) - dimensionless displacement - j j the component of - density of fluid - a , b density of fluids a and b - s density of tube or rod material - dimensionless radial coordinate - * dimensionless radius of container - dimensionless times - spatial component of defined in equation (11) - j , tm jth, mth component of - dimensionless streamfunction - 0, 1 components of in series expansion in powers of - streamfunction - dimensionless frequency (based on ) - angular frequency - 0 angular frequency in absence of fluid and internal damping - j angular frequency in mode j in a fluid - a , b frequencies in fluids a and b  相似文献   

8.
The transient forced convection in tubulent channel flow with a step change in inlet temperature is solved by using a hybrid scheme, namely, by combining the generalized integral transform technique with a second-order accurate finite-differences. Stability and convergence of the scheme are examined. Numerical results are presented for the fluid bulk temperature and local Nusselt number as a function of position along the channel at different times, and the propagation of the thermal wave front during temperature transients is examined.
Nichtstationärer turbulenter Wärmeübergang bei Kanalströmung mit sprunghafter Änderung der Eintrittstemperatur
Zusammenfassung Der nichtstationäre Wärmeübergang bei turbulenter erzwungener Konvektionsströmung in Kanälen nach sprunghafter Änderung der Eintrittstemperatur wird mit Hilfe eines Hybridmodells untersucht. Dieses kombiniert die verallgemeinerte Integraltransformationstechnik mit einem Finite-Differenzen-Schema zweiter Ordnung von hoher Genauigkeit. Stabilität und Konvergenz des Verfahrens werden untersucht und numerische Ergebnisse für die Mischtemperatur und die lokale Nußelt-Zahl mitgeteilt und zwar als Funktion von Zeit und Kanallängskoordinate. Auch die Ausbreitung der thermischen Störungsfront nach Temperatursprung wird untersucht.

Nomenclature A ik coefficients matrix, Eq. (6) - A* ik coefficients matrix, Eq. (13 b) - c i eigenvalues of linearized coefficients matrixA* - C maximum to mean velocity ratio - D e equivalent diameter (= 4r w ) - E(R) dimesionless total diffusivity (= 1 + h /) - N number of terms in eigenvalue expansion - N i normalization integral, Eq. (3 c) - NT,NZ total number of nodes in andZ variables - Nu(Z) local Nusselt number - Pr Prandtl number (=/) - Pe Peclet number (=Re Pr) - Re Reynolds number (=u m De/) - r w channel radius - r transverse coordinate (dimensional) - R transverse coordinate (dimensionless) (=r/r w ) - t time (dimensional) - T 0,T i initial and inlet temperature, respectively (dimensional) - T (r,z,t) fluid temperature (dimensional) - u m mean flow velocity - u max maximum flow velocity - u(r) velocity distribution (dimensional) - W (R) velocity distribution (dimensionless) (=u(r)/Cu m ) - z axial coordinate (dimensional) - Z axial coordinate (dimensionless) (= 16z/C Re Pr D e ) Greek letters thermal diffusivity of the fluid - Courant number - h eddy diffusivity for heat - m eddy diffusivity for momentum - parameter of discretization, Eq. (8c) - (R, Z, ) dimensionless temperature (= [T (r, z, t) –T 0/T i T 0]) - av (Z, ) dimensionless fluid bulk temperature, Eq. (10) - ( i ,R) eigenfunctions of Sturm-Liouville problem (2) - i eigenvalues of Sturm-Liouville problem (2) - dimensionless time (=t/r 2 w ) - kinematic viscosity  相似文献   

9.
A mathematical model was developed to describe the behavior of Herschel-Bulkley fluids in a back extrusion (annular pumping) device. A technique was also developed to determine the rheological properties (yield stress, flow behavior index, and consistency coefficient) of these fluids. Mathematical terms were expressed in four dimensionless terms, and graphical aids and tables were prepared to facilitate the handling of the expressions.Nomenclature a radius of the plunger, m - dv/dr shear rate, s–1 - F force applied to the plunger, N - F b buoyancy force, N - F cb force corrected for buoyancy, N - F T recorded force just before the plunger is stopped, N - F Te recorded force after the plunger is stopped, N - g acceleration due to gravity, m/s2 - H(t) momentary height between plunger and container bottom, m - K a/R, dimensionless - L length of annular region, m - L(t) depth of plunger penetration, m - n flow behavior index, dimensionless - p static pressure, Pa - P L pressure in excess of hydrostatic pressure at the plunger base, Pa - p 0 pressure at entrance to annulus, Pa - P pressure drop per unit of length, Pa/m - Q total volumetric flow rate through the annulus, m3/s - r radial coordinate, measured from common axis of cylinder forming annulus, m - R radius of outer cylinder of annulus, m - s reciprocal of n, dimensionless - t time, s - T dimensionless shear stress, defined in Eq. (3) - T 0 dimensionless yield stress, defined in Eq. (4) - T w dimensionless shear stress at the plunger wall - p velocity of plunger, m/s - velocity, m/s - mass density of fluid, kg/m3 - Newtonian viscosity, Pa s - P p 0 p L , Pa - consistency coefficient, Pa sn - value of where shear stress is zero - , + limits of the plug flow region (Fig. 1) - r/R - shear stress, Pa - y yield stress, Pa - w shear stress at the plunger wall, Pa - dimensionless flow rate defined in Eq. (24) - dimensionless velocity defined by Eq. (5) - , + dimensionless velocity outside the plug flow region - max dimensionless maximum velocity in the plug flow region - p dimensionless velocity at the plunger wall  相似文献   

10.
The linear stability theory is used to study stability characteristics of laminar gravity-induced condensate film flow down an arbitrarily inclined wall. The coupled equations describing the velocity and temperature disturbances are solved numerically. The results show that laminar condensate films are unstable in all practical situations. Several stabilizing effects are acting on the film flow; these are: the angle of inclination, the surface tension at large wave numbers, the condensation rate at small Reynolds numbers, and to a certain extent the Prandtl number. For a vertical plate, the expected wavelengths of the disturbances are presented as functions of the Reynolds numbers of the condensate flow.
Zusammenfassung Mit Hilfe der linearen StabilitÄtstheorie werden die StabilitÄtseigenschaften laminarer Kondensatfilme an ebenen WÄnden untersucht. Die Gleichungssysteme, die Temperatur- und Geschwindigkeitsstörungen beschreiben, werden numerisch gelöst. Es zeigt sich, da\ Kondensatfilme in jedem praktischen Fall ein unstabiles Verhalten aufweisen. Der stabilisierende Einflu\ von OberflÄchenspannung, Schwerkraft und Stoffübertragung durch Kondensation werden diskutiert. Für eine senkrechte Wand werden die zu erwartenden WellenlÄngen der Störungen als Funktion der Reynoldszahlen des Kondensatfilms angegeben.

Abrreviations

Nomenclature C*=C r * + iC i * dimensional complex wave velocity - C=C*/u0 dimensionless wave velocity - cp specific heat at constant pressure - g gravitational acceleration - hn defined by Eq. (16) - hfg latent heat - k thermal conductivity - Pe=PrRe Peclet number - Pr Prandtl number - Py defined by Eq. (15) - q iaPe - Re=u0 Reynolds number - S temperature disturbance amplitude - t* dimensional time - t=t* u0/ dimensionless time - T dimensional temperature - Ts saturation temperature - Tw wall temperature - T =Ts–Tw temperature drop across liquid film - u*, v* dimensional velocity component - v=v*/u0 dimensionless velocity components - u0 dimensional surface velocity of undisturbed film flow - x*, y* dimensional coordinates - x=x*/ dimensionless coordmates - Yn functional vector defined by Eq. (20) Greek Symbols dimensionless wave number - roots of Eq. (20) - n defined by Eq. (21) - local thickness of undisturbed condensate film - * wavelength, dimensional - wavelength, dimensionless - temperature variable - kinematic viscosity of liquid - liquid density - g vapor density - surface tension - stream function disturbance amplitude - stream function - angle of inclination  相似文献   

11.
    
Heat transfer in the flow of a conducting Fluid between two non-conducting porous disks (—one is rotating and other is stationary) in the presence of a transverse uniform magnetic field and under uniform suction, is studied. Asymptotic solutions are obtained for R«M 2. The rate of Heat flux from the disks and the temperature distribution are investigated. It is observed that the temperature distribution and heat flux increase with the increase of magnetic field.Nomenclature B 0 imposed magnetic field - density of the fluid - velocity vector - p pressure - viscosity of the fluid - kinematic viscosity of the fluid - J r radial component of current density - J azimuthal component of current density - J z axial component of current density - m magnetic permeability - electrical conductivity of the fluid - U suction velocity - E r radial component of electric field - E azimuthal component of electric field - E z axial component of electric field - c p specific heat at constant pressure - angular velocity of the rotating disk - u radial component of velocity - v azimuthal component of velocity - w axial component of velocity - F() dimensionless function defined in (17) - G() dimensionless function defined in (17) - () dimensionless function defined in (18) - () dimensionless function defined in (18) - dimensionless axial distance - R suction Reynolds number, Uh/ - R 1 rotation Reynolds number, h 2/ - M Hartmann number, B 0 h(/)1/2 - P Prandtl number, c p /R - = 2R 1 2 /R 2 - dimensionless quantity - N Perturbation parameter, M 2/R - k Co-efficient of thermal conductivity - s Dimensionless quantity defined in (30) as . - E Dimensionless quantity defined as . - X Dimensionless quantity defined as . - K Constant defined in (22)  相似文献   

12.
The convection velocity of vortices in the wake of a circular cylinder has been obtained by two different approaches. The first, implemented in a wind tunnel using an array of X-wires, consists in determining the velocity at the location of maximum spanwise vorticity. Four variants of the second method, which estimates the transit time of vortices tagged by heat or dye, were used in wind and water tunnels over a relatively large Reynolds number range. Results from the two methods are in good agreement with each other. Along the most probable vortex trajectory, there is only a small streamwise increase in the convection velocity for laminar conditions and a more substantial variation when the wake is turbulent. The convection velocity is generally greater than the local mean velocity and does not depend significantly on the Reynolds number.Nomenclature d diameter of circular cylinder - f frequency in spectrum analysis - f v average vortex frequency - r v vortex radius - Re Reynolds number U o d/v - t time - Th , Th , Th r thresholds for zp, , and r v respectively - U o free stream velocity - U 1 maximum value of (U oU) - U c convection velocity of the vortex, as obtained either by Eq. (1) or Eq. (2) - U co convection velocity used in Eq. (3) U cd, U cu average convection velocities of downstream and up-stream regions respectively of the vortex - U cv the value of U c at y = 0.5 - u, v the velocity fluctuations in x and y directions respectively - U, V mean velocity components in x and y directions respectively - U,V U = U + u, V = V + v - x, y, z co-ordinate axes, defined in Fig. 1 Greek Symbols circulation - mean velocity half-width - x spacing between two cold wires or grid spacing - 1, 2 temperature signals from upstream and downstream cold wires respectively - v kinematic viscosity - c transit time for a vortex to travel a distance x - phase in the cross-spectrum of 1 and 2 - z instantaneous spanwise vorticity - zc cut-off vorticity used in determining the vortex size - zp peak value of z - a denotes conditional average, defined in Eq. (12) - a prime denoting rms value  相似文献   

13.
Results from a series of Theological and pipe flow experiments using watersoluble hydroxyethylcellulose and polyethyleneoxide are presented. Phenomena of drag reduction were investigated for values of concentration (in weight) of polymers in water ranging x = 10-4 to x = 5 · 10-3. Velocity measurements by using a laser-Doppler anemometer to type DISA-Mark II served for determining the variation in thickness of the elastic sublayer in the turbulent flow exhibiting drag reduction.List of Symbols A coefficient in Eq. (1) - B coefficient in Eq. (1) - D pipe diameter - D shear velocity - K consistency parameter in Eq. (5) - n flow index of non-newtonian fluids - r radial distance from the pipe center - Re Reynolds number - R pipe radius - y distance from the pipe wall - y + dimensionless distance from the pipe wall, (R-r)u * / - y e + experimental value of the dimensionless thickness of the viscous and elastic sublayer - y s + dimensionless thickness of the viscous and the elastic sublayer - u + dimensionless local velocity, / * - u * dynamic friction velocity, w(/8) o.5 - time-averaged local instantaneous velocity of flow - w average velocity over the cross-section of the pipe - X weight fraction of polymer in water solution - viscosity - fraction factor - density - v kinematic viscosity - shear stress A version of this paper was presented at the 9th national symposium on the measurement of turbulence with laser-Doppler and other anemometers, Bratislava, CSSR, 1986  相似文献   

14.
The steady two-dimensional laminar flow of an incompressible conducting fluid between two parallel circular disks in the presence of a transverse magnetic field is investigated. A solution is obtained by perturbing the creeping flow solution and it is valid only for small suction or injection Reynolds numbers. Expressions for velocity, induced magnetic field, pressure, and shear stress distribution are determined and are compared with the creeping flow and hydrodynamic solutions. It is found that the overall effect of the magnetic field on the flow is the same as that in the Hartmann flow.Nomenclature stream function - 2h channel width - z, r axial and radial coordinates - radius of the disk - U r radial component of velocity - U r average velocity in the radial direction, U r d - U z axial component of velocity - U 0 injection or suction velocity - dimensionless axial coordinate, z/h - f() function defined in (8) - density - coefficient of kinematic viscosity - electrical conductivity - magnetic permeability - H 0 impressed magnetic field - h r induced magnetic field, H r /H 0 - M Hartmann number, H 0 h(/)1/2 - R Reynolds number, U 0 h/ - R m magnetic Reynolds number, U 0 r - A constant defined in (15) - K constant defined in (27) - C 2 constant defined in (26) - p pressure - C p pressure coefficient - C f skin friction coefficient  相似文献   

15.
The paper presents an exact analysis of the dispersion of a passive contaminant in a viscous fluid flowing in a parallel plate channel driven by a uniform pressure gradient. The channel rotates about an axis perpendicular to its walls with a uniform angular velocity resulting in a secondary flow. Using a generalized dispersion model which is valid for all time, we evaluate the longitudinal dispersion coefficientsK i (i=1, 2, ...) as functions of time. It is shown thatK 1=0 andK 3,K 4, ... decay rapidly in comparison withK 2. ButK 2 decreases with increasing (the dimensionless rotation parameter) for values of upto approximately =2.2. ThereafterK 2 increases with further increase in and its value gets saturated for large values of (say, 500) and does not change any further with increase in . A physical explanation of this anomalous behaviour ofK 2 is given.
Instationäre konvektive Diffusion in einem rotierenden Parallelplattenkanal
Zusammenfassung In dieser Untersuchung wird eine exakte Analyse der Ausbreitung eines passiven Kontaminierungsstoffes in einer zähen Flüssigkeit gegeben, die, befördert durch einen gleichförmigen Druckgradienten, in einem Parallelplattenkanal strömt. Der Kanal rotiert mit gleichförmiger Winkelgeschwindigkeit um eine zu seinen Wänden senkrechte Achse, wodurch sich eine Sekundärströmung ausbildet. Unter Verwendung eines generalisierten, für alle Zeiten gültigen Dispersionsmodells werden die longitudinalen DispersionskoeffizientenK i (i=1, 2, ...) als Funktionen der Zeit ermittelt. Es wird gezeigt, daßK 1=0 gilt und dieK 3,K 4, ... gegenüberK 2 schnell abnehmen.K 2 nimmt ab, wenn , der dimensionslose Rotationsparameter, bis etwa zum Wert 2,2 ansteigt. Danach wächstK 2 mit bis auf einem Endwert an, der etwa ab =500 erreicht wird. Dieses anomale Verhalten vonK 2 findet eine physikalische Erklärung.

List of symbols C solute concentration - D molecular diffusivity - K i longitudinal dispersion coefficients - 2L depth of the channel - P 0 dimensionless pressure gradient along main flow - Pe Péclet number - q velocity vector - Q x,Q y mass flux along the main flow and the secondary flow directions - dimensionless average velocity along the main flow direction - (x, y, z) Cartesian co-ordinates Greek symbols dimensionless rotation parameter - the inclination of side walls withx-axis - kinematic viscosity - fluid density - dimensionless time - angular velocity of the channel - dimensionless distance along the main flow direction - dimensionless distance along the vertical direction - dimensionless solute concentration - integral of the dispersion coefficientK 2() over a time interval  相似文献   

16.
The wedge subjected to tractions: a paradox re-examined   总被引:2,自引:0,他引:2  
The classical two-dimensional solution for the stress distribution in an elastic wedge loaded by a uniform pressure on one side of the wedge becomes infinite when the wedge angle 2 satisfies the equation tan 235-1. This paradox was resolved recently by Dempsey who obtained a solution which is bounded at 235-2. However, for not equal but very close to 235-3, the classical solution can still be very large as approaches 235-4. In this paper we re-examine the paradox. We obtain a solution which remains bounded as approaches 235-5 and reproduces Dempsey's solution in the limit 235-6. At 235-7 the stress distribution contains a (ln r) term for general loadings. The (ln r) term disappears under a special loading and the stresses are bounded for all r. Moreover, the solution is not unique. In other words, for the wedge angle 235-8 under a special loading, infinitely many solutions exist for which the stresses are bounded for all r. We also obtain solutions which are bounded and approach Dempsey's solutions when 2= and 2. Again, under a special loading infinitely many solutions exist for which the stresses are bounded for all r. Care has been exercised in this paper to present the solutions in a form in which the terms r - and ln r are replaced by R -gl and ln R where R=r/r 0is the dimensionless radial distance and r 0 is an arbitrary constant having the dimension of length.  相似文献   

17.
Summary As part of a study on the hydrodynamics of a cyclone separator, a theoretical investigation of the flow pattern in a flat box cyclone (vortex chamber) has been carried out. Expressions have been derived for the tangential velocity profile as influenced by internal friction (eddy viscosity) and wall friction. The most important parameter controlling the tangential velocity profile is = –u 0 R/(v+ ), where u 0 is the radial velocity at the outer radius R of the cyclone, the kinematic liquid viscosity and is the kinematic eddy viscosity. For values of greater than about 10 the tangential velocity profile is nearly hyperbolic, for smaller than 1 the tangential velocity even decreases towards the centre. It is shown how and also the wall friction coefficient may be obtained from experimental velocity profiles with the aid of suitable graphs. Because of the close relation between eddy viscosity and eddy diffusion, measurements of velocity profiles in flat box cyclones will also provide information on the eddy motion of particles in a cyclone, a motion reducing its separation efficiency.List of symbols A cross-sectional area of cyclone inlet - h height of cyclone - p static pressure in cyclone - p static pressure difference in cyclone between two points on different radius - r radius in cyclone - r 1 radius of cyclone outlet - R radius of cyclone circumference - u radial velocity in cyclone - u 0 radial velocity at circumference of flat box cyclone - v tangential velocity - v 0 tangential velocity at circumference of flat box cyclone - w axial velocity - z axial co-ordinate in cyclone - friction coefficient in flat box cyclone (for definition see § 5) - 1 value of friction coefficient for 1<< 2 - 2 value of friction coefficient for 2<<1 - = - 1 value of for 1<< 2 - 2 value of for 2<<1 - thickness of laminar boundary layer - =/h - turbulent kinematic viscosity - ratio of z to h - k ratio of height of cyclone to radius R of cyclone - parameter describing velocity profile in cyclone =–u 0 R/(+) - kinematic viscosity of fluid - density of fluid - ratio of r to R - 1 value of at outlet of cyclone - 2 value of at inner radius of cyclone inlet - w shear stress at cyclone wall - angular momentum in cyclone/angular momentum in cyclone inlet - 1 value of at = 1 - 2 value of at = 2  相似文献   

18.
A three-parameter model describing the shear rate-shear stress relation of viscoelastic liquids and in which each parameter has a physical significance, is applied to a tangential annular flow in order to calculate the velocity profile and the shear rate distribution. Experiments were carried out with a 5000 wppm aqueous solution of polyacrylamide and different types of rheometers. In a shear-rate range of seven decades (5 10–3 s–1 < < 1.2 105 s–1) a good agreement is obtained between apparent viscosities calculated with our model and those measured with three different types of rheometers, i.e. Couette rheometers, a cone-and-plate rheogoniometer and a capillary tube rheometer. a physical quantity defined by:a = {1 – ( / 0)}/ 0 (Pa–1) - C constant of integration (1) - r distancer from the center (m) - r 1,r 2 radius of the inner and outer cylinder (m) - v r local tangential velocity at a distancer from the center (v r = r r) (m s–1) - v 2 local tangential velocity at a distancer 2 from the center (m s–1) - shear rate (s–1) - local shear rate (s–1) - 1 wall shear rate at the inner cylinder (s–1) - dynamic viscosity (Pa s) - a apparent viscosity (a = / ) (Pa s) - a1 apparent viscosity at the inner cylinder (Pa s) - 0 zero-shear viscosity (Pa s) - infinite-shear viscosity (Pa s) - shear stress (Pa) - r local shear stress at a distancer from the center (Pa) - 0 yield stress (Pa) - 1, 2 wall shear-stress at the inner and outer cylinder (Pa) - r local angular velocity (s–1) - 2 angular velocity of the outer cylinder (s–1)  相似文献   

19.
The study of the diffusion of a magnetic field into a moving conductor is of interest in connection with the production of ultra-high-strength magnetic fields by rapid compression of conducting shells [1,2]. In [3,4] it is shown that when a magnetic field in a plane slit is compressed at constant velocity, the entire flux enters the conductor. In the present paper we formulate a general result concerning the conservation of the sum current in the cavity and conductor for arbitrary motion of the latter. We also consider a special case of conductor motion when the flux in the cavity remains constant despite the finite conductivity of the material bounding the magnetic field.Notation 1, * flux which has diffused into the conductor - 2 flux in the cavity - 0 sum flux - r radius - r* cavity boundary - thickness of the skin layer - (r) delta function of r - t time - q intensity of the fluid sink - v velocity - flux which has diffused to a depth larger than r - x self-similar variable - dimensionless fraction of the flux which has diffused to a depth larger than r - * fraction of the flux which has diffused into the conductor - a conductivity - c electrodynamic constant - Rm magnetic Reynolds number - dimensionless parameter  相似文献   

20.
The unsteady natural convection boundary layer flow over a semi-infinite inclined plate is considered with the wall temperatureT w ,(x) (=T +ax n )varying as the power of the axial coordinate. The governing equations are solved by an implicit finite difference scheme of Crank-Nicolson type. Numerical results are obtained for different values of Prandtl number, Grashof number and n for different angles of inclination. The steadystate velocity and temperature profiles, local and average skin frictions and Nusselt numbers are shown graphically. The effects of the angle of inclination and exponent n on velocity and temperature profiles, skin friction and Nusselt number have been discussed. The velocity, temperature and Nusselt number of the present study are compared with the available results and a good agreement is found to exist between the two.
Differenzlösung für nichtstationäre natürliche Grenzschicht-Konvektionsströmung an einer geneigten Platte mit veränderlicher Oberflächentemperatur
Zusammenfassung Die nichtstationäre natürliche Grenzschicht-Konvektionsströmung an einer halbunendlichen geneigten Platte wird unter Zugrundelegung der GesetzmäßigkeitT w ,(x) (=T +ax n für die Wandtemperatur als Funktion der Achsialkoordinate untersucht, und zwar mit Hilfe eines impliziten Differenzverfahrens vom Crank-Nicolson Typ und bei Variation der Prandtl- und Grashof-Zahlen, des Exponenten n und des Neigungswinkels. Graphisch dargestellt sind die Geschwindigkeits-und Temperaturprofile im stationären Zustand, die örtlichen und gemittelten Reibungsbeiwerte und der Nusselt-Zahlen. Der Einfluß des Neigungswinkels und des Exponenten n auf diese Größe wird diskutiert. Im Vergleich mit den Ergebnissen aus anderen Arbeiten konnte gute Übereinstimmung festgestellt werden.

Nomenclature g acceleration due to gravity - Gr L Grashof number at x=L - L length of the plate - n exponent in the power law variation of the wall temperature - Nu x local Nusselt number - Nu X dimensionless local Nusselt number - average Nusselt number - dimensionless average Nusselt number - p pressure - Pr Prandtl number - t time - t dimensionless time - T temperature - Tw temperature on the plate - T dimensionless temperature - u x-velocity component - U dimensionlessX-velocity component - v y-velocity component - V dimensionlessY-velocity component - x spatial coordinate along the plate - X dimensionless spatial coordinate along the plate - y spatial coordinate normal to the plate - Y dimensionless spatial coordinate normal to the plate Greek symbols thermal diffusivity - ß volumetric coefficient of thermal expansion - t dimensionless time-step - X dimensionless finite difference grid spacing in theX-direction - Y dimensionless finite difference grid spacing in theY-direction - angle of inclination of plate with horizontal - kinematic viscosity - density - x local skin friction - X dimensionless local skin friction - average skin friction - dimensionless average skin friction  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号