首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A wide range of commercial diazodicarboxylates and phosphines were screened in an attempt to find purification-free conditions for application in parallel synthesis. The combination of immobilized triphenylphosphine and TMAD proved to be suitable for the synthesis of aryl ethers via the Mitsunobu reaction. Nine ethers were synthesized in good yield and excellent purity, the purification being limited to a filtration step.  相似文献   

2.
A short, efficient synthesis of 5′-amino-5′-(S)-methyl-2′,5′-dideoxynucleosides 1 has been developed through the diastereoselective addition of methylmagnesium bromide or methyllithium to an intermediate tert-butylsulfinimide.  相似文献   

3.
β-Tetra(tert-butyl)porphyrin was prepared from 2-dimethylaminomethyl-4-tert-butylpyrrole and converted into porphine, the mother compound of porphyrins, in 64% yield. The dealkylation smoothly proceeded in aqueous sulfuric acid over 15 min at 190 °C under nitrogen.  相似文献   

4.
CpZrCl3·dme was treated with Na[El(OtBu)3], El = Ge, Sn, Pb, respectively. The addition of Na[Sn(OtBu)3] to CpZrCl3·dme caused rapid cyclopentadienide loss and the equally rapid appearance of CpSnCl, half of which crystallized as the trinuclear complex {[ZrCl(OtBu)3]2·CpSnCl}. Pristine CpSnCl reacted almost instantly with NaOtBu to give NaCp and Na[Sn(OtBu)3], which co-crystallized as a coordination polymer. Na[Ge(OtBu)3] also displaced Cp from zirconium, but with a different product distribution, giving Cp2Ge, fac-[Ge(μ-tBuO)3ZrCl(OtBu)2], and ZrCl(OtBu)3. By contrast, Na[Pb(OtBu)3] only exchanged its tert-butoxide groups with zirconium to furnish CpZr(OtBu)3 and PbCl2. The solid-state structures of {[ZrCl(OtBu)3]2·CpSnCl}, fac-[Ge(μ-tBuO)3ZrCl(OtBu)2], and {NaCp·Na[Sn(OtBu)3]}n were determined.  相似文献   

5.
6.
The active site of Acetyl CoA Synthase utilizes a square planar NiN2S2 complex in the form of NiII(CGC)2− (CGC = the cysteine-glycine-cysteine tripeptide motif within the protein) to serve as a bidentate sulfur-donor ligand to chelate a second, catalytically active Ni atom responsible for the C-C and C-S coupling reactions for the production of Acetyl CoA. Metalloenzymes, such as this, which house stable catalytic complexes within intricately designed pockets accessible by solvent channels, have inspired design of resin-bound complexes. Through the use of TentaGel S-RAM® resin beads, the O-Ni(CGC)2− ligand has been synthesized and derivatized with the RhI(CO)2 moiety. The identification of the adduct on these resin beads is afforded by attenuated total reflectance FTIR spectroscopy in the ν(CO) region and compared to solution analogues. The goal of this study is to establish a quantitative measure of the loading of nickel and rhodium on the tripeptide modified resin beads, O-(CGC). The extent of CGC derivatization was determined by Fmoc cleavage of the Fmoc protected O-(CGC). Nickel and rhodium loading were determined by Neutron Activation Analysis. This work provides evidence that the TentaGel S-RAM® resin beads greatly decrease the air sensitivity of the Ni-Rh complex as compared to the unsupported solution phase analogue. The derivatized beads have also been studied for their ability to withstand a number of physical stresses, i.e., for leaching.  相似文献   

7.
Reaction of (diacetoxyiodo)benzene [PhI(OAc)2] in trifluoromethanesulfonic acid (TfOH) resulted in oligomerization of PhI(OAc)2. Quenching with NaBr gave the bromide salts of hypervalent iodine oligomers that were determined by thermolysis with KI to be a para phenylene type of oligomers. Neutralization of the reaction mixture of PhI(OAc)2 and TfOH with aqueous NaHCO3 yielded the triflate salts of iodine oligomers. Furthermore, quenching the reaction mixture with aromatic substrates afforded arylated iodine oligomers. These iodine oligomers were found to be 3-4 of the number average degree of polymerization (Pn) by GC analysis of the thermolysis products and 1H NMR analysis. The major products, trimer and tetramer, were synthesized independently.  相似文献   

8.
9.
In the presence of tert-butyl iodide, alkyl azides are converted into the corresponding iodides at room temperature, whereas, N-t-Bu anilines are obtained from aryl azides under the same experimental conditions. A mechanism is proposed to explain this unusual reactivity.  相似文献   

10.
Binuclear Rh(II) compounds [Rh2(μ-OOCCH3)2(dbbpy)2(H2O)2](CH3COO)2 (1) (dbbpy = 4,4′-di-tert-butyl-2,2′-bipyridine), [Rh2(μ-OOCCH3)2(dbbpy)2(H2O)2](BF4)2·H2O·CH3CN (2), [Rh2(CH3COO)2(C18H24N2)2(CH3CN)2](BF4)2·4CH3CN (3) and {[Rh2(μ-OOCCH3)2(dbbpy)2][BF4]}n (4) have been synthesized and characterized with spectroscopic methods. Structure of complex 3 has been determined using X-ray crystallography. Rhodium atoms in compound 3 have distorted octahedral coordination with O and N atoms in equatorial positions and Rh atom and CH3CN molecule in axial coordination sites. Reduction of rhodium(II) compounds with aqueous 2-propanol leads to the formation of polymetallic compound {[Rh2(μ-OOCCH3)2(dbbpy)2][BF4]}n (4) containing [Rh2]3+ core. Compound 4 shows strong antiferromagnetic properties, μ = 0.18–1.73 M.B. in the range 1.8–300 K, J = −597 cm−1. Electrochemistry of compounds 3 and 4 in CH3CN has been investigated. Compound 4 exhibits a poorly reversible oxidation system at E1/2 = −0.92 V (ΔEp = 0.19 V) and in solution in DMF is slowly oxidized to 3 even in total absence of oxygen. Complex 3 is irreversibly oxidized to Rh(III) compound at Epa = 1.48 V and irreversibly reduced at Epc = −1.02 V to lead to the unstable polynuclear complex 4 in CH3CN.  相似文献   

11.
Mixed-ligand zinc complexes with N,N,N′,N′-tetramethylethylenediamine (tmen) and R-salicylaldehyde N(4)-allyl thiosemicarbazones (R: 3-OCH3 (L1), 5-Br(L2)), [ZnL1,2(tmen)], were synthesized and the complexes were characterized by elemental analysis, atomic absorption spectrometer, magnetic susceptibility, molar conductivity, electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) mass spectra and IR, UV–Vis, 1H NMR and 15N spectroscopies. Crystal of [ZnL2(tmen)] have a slightly distorted square pyramid involving O, N, S atoms of thiosemicarbazone and one N atom of tmen in basal plane and the other N atom of tmen in apex of the pyramid. The non-coordinated allyl group is disordered.  相似文献   

12.
13.
A simple, efficient, rapid, and mild method for the synthesis of α-chloro-nitroso compounds is described using bis(2,4,6-trichlorophenyl)urea (CC-2).  相似文献   

14.
Syntheses and solid-state structures of zinc and tin(II) compounds, containing the N-silyl-amide ligands (OtBu)(NR)SiMe2, R = tBu (LtBu), or R = p-tolyl (LpTol), are reported. The N-silyl amines were synthesized by modified published procedures from commercially available Me2SiCl2, tBuOH, and tBuNH2, or p-Me-C6H4NH2, respectively. Treatment of SnCl2 with LiLpTol furnished Sn(LpTol)2, which was X-ray structurally characterized and shown to contain two covalent Sn-N bonds and two asymmetrical O → Sn donor bonds. The single-crystal X-ray structure of Sn(LtBu)2 revealed a much more symmetrically-coordinated, pseudo-trigonal-bipyramidal tin atom. Aminolysis of diethylzinc with HLpTol produced [EtZn(LpTol)]2, which crystallized as a centrosymmetric dimer, containing four-coordinate zinc atoms connected by bridging amides. Zinc dichloride, by contrast, reacted with two equivalents of LiLtBu to produce the homoleptic, pseudo-spirocyclic Zn(LtBu)2.  相似文献   

15.
In this article, ten new coordination frameworks, namely, [Ni(H2O)6]·(L3) (1), [Zn(L3)(H2O)3] (2), [Cd(L3)(H2O)3]·5.25H2O (3), [Ag(L1)(H2O)]·0.5(L3) (4), [Ni(L3)(L1)] (5), [Zn(L3)(L1)0.5]·H2O (6), [Cd(L3)(L1)0.5(H2O)] (7), [CoCl(L3)0.5(L1)0.5] (8), [ZnCl(L3)0.5(L2)0.5] (9), and [CoCl(L3)0.5(L2)0.5] (10), where L1 = 1,1′-(1,4)-butanediyl)bis(imidazole), L2 = 1,1′-(1,4-butanediyl)bis(2-ethylbenzimidazole) and H2L3 = 3,3′-(p-xylylenediamino)bis(benzoic acid), have been synthesized by varying the metal centers and nitrogen-containing secondary ligands. These structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses and IR spectra. In 1, the L3 anion is not coordinated to the Ni(II) center as a free ligand. The Ni(II) ion is coordinated by water molecules to form the cationic [Ni(H2O)6]2+ complex. The hydrogen bonds between L3 anions and [Ni(H2O)6]2+ cations result in a three-dimensional (3D) supramolecular structure of 1. In compounds 2 and 3, the metal centers are linked by the organic L3 anions to generate 1D infinite chain structures, respectively. The hydrogen bonds between carboxylate oxygen atoms and water molecules lead the structures of 2 and 3 to form 3D supramolecular structures. In 4, the L3 anion is not coordinated to the Ag(I) center, while the L1 ligands bridge adjacent Ag(I) centers to give 1D Ag-L1 chains. The hydrogen bonds among neighboring L3 anions form infinite 2D honeycomb-like layers, in the middle of which there exist large windows. Then, 1D Ag-L1 chains thread in the large windows of the 2D layer network, giving a 3D polythreaded structure. Considering the hydrogen bonds between the water molecules and L3 anions, the structure is further linked into a 3D supramolecular structure. Compounds 5 and 7 were synthesized through their parent compounds 1 and 3, respectively, while 6 and 9 were obtained by their parent compound 2. In 5, the L3 anions and L1 ligands connect the Ni(II) atoms to give a 3D 3-fold interpenetrating dimondoid topology. Compound 6 exhibits a 3D three-fold interpenetrating α-Po network structure formed by L1 ligands connecting Zn-L3 sheets, while compound 7 shows a 2D (4,4) network topology with the L1 ligands connecting the Cd-L3 double chains. In compound 8, the L1 ligands linked Co-L3 chains into a 2D layer structure. Two mutual 2D layers interpenetrated in an inclined mode to generate a unique 3D architecture of 8. Compounds 9 and 10 display the same 2D layer structures with (4,4) network topologies. The effects of the N-containing ligands and the metal ions on the structures of the complexes 1-10 were discussed. In addition, the luminescent properties of compounds 2-4, 6, 7 and 9 were also investigated.  相似文献   

16.
The lipophile extract of Lonchocarpusnicou roots afforded the new pyranochalcone 3-O-methylabyssinone A as well as the new rotenoids 7′-hydroxytephrosin, and 7′-nor-6′-oxo-2′,3′-dehydrorotenone, both compounds occurring with the known 7′-hydroxydeguelin and 7′-nor-6′-oxo-2′,3′-dehydro-12aβ-hydroxyrotenone. Furthermore, two rotenoid epoxides previously reported as resulting from the direct oxidative conversion of rotenone and 12aβ-hydroxyrotenone, respectively, were isolated for the first time from a plant source. All the structures were established on the basis of UV, MS, and NMR data.  相似文献   

17.
18.
19.
Complexes of ZnII salts with 4,4′-bipyridine-N,N′-dioxide (bpdo) have been prepared by solvathermal and solvent layering methods. Three complexes were obtained from ZnBr2: 1 is a 2D coordination polymer [Zn2Br4(bpdo)2]n, (2) a discrete trimetallic molecule [Zn3Br6(H2O)2(bpdo)4] and 3 a salt [ZnBr4][Zn(H2O)5(bpdo)]. Complexes 2 and 3 contain ZnII ions in both octahedral and tetrahedral coordination geometry. While in 2, these are covalently linked by bridging bpdo ligands forming zwitterionic trimetallic molecules, in 3 there is complete charge separation into [ZnBr4]2− anions and [Zn(H2O)5(bpdo)]2+ cations. When Zn(NCS)2 is used as starting material, a 1D coordination polymer [Zn(H2O)2 (bpdo)(NCS)2]n is obtained.  相似文献   

20.
Racemic 2,2′-bis[diarylstibano]-1,1′-binaphthyls [(±)-BINASbs] and 2,2′-bis[di(p-tolyl)bismuthano]-1,1′-binaphthyl [(±)-BINABi], which are the antimony and bismuth congeners of BINAP, have been prepared from 2,2′-dibromo-1,1′-binaphthyl (DBBN) via 2,2′-dilithio-1,1′-binaphthyl intermediate by treatment with the appropriate metal halides [(p-Tol)2SbBr, Ph2SbBr and (p-Tol)2BiCl]. The optical resolution of the (±)-BINASbs could be achieved via the separation of a mixture of the diastereomeric Pd-complexes derived from the reaction of (±)-BINASbs with di-μ-chlorobis{(S)-2-[1-(dimethylamino)-ethyl]phenyl-C1,N}dipalladium(II). Optically active (R)-BINASb and (R)-BINABi could be also obtained from optically active (R)-DBBN by the same procedure. The enantiopure BINASbs have been shown to be effective chiral ligands for the rhodium-catalyzed asymmetric hydrosilylation of ketones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号