首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Complexes [Zn[Se(2)P(OEt)(2)](2)]( infinity ) (1) and [Zn(2)[Se(2)P(O(i)Pr)(2)](4)] (2) are prepared from the reaction of Zn(ClO(4))(2).6H(2)O and (NH(4))[Se(2)P(OR)(2)] (R = Et and (i)Pr) in a molar ratio of 1:2 in deoxygenated water at room temperature. Positive FAB mass spectra show m/z peaks at 968.8 (Zn(2)L(3)(+)) and 344.8 (ZnL(+)) for 1 and m/z at 1052.8 (Zn(2)L(3)(+)) for 2. (1)H NMR spectra exhibit chemical shifts at delta 1.43 and 4.23 ppm for 1 and 1.41 and 4.87 ppm for 2 due to Et and (i)Pr group of dsep ligands. While the solid-state structure of compound 1 is a one-dimensional polymer via symmetrically bridging dsep ligands, complex 2 in the crystalline state exists as a dimer. In both 1 and 2, zinc atoms are connected by two bridging dsep ligands with an additional chelating ligand at each zinc atom. The dsep ligands exhibit bimetallic biconnective (micro(2), eta(2)) and monometallic biconnective (eta(2)) coordination patterns. Thus, each zinc atom is coordinated by four selenium atoms from two bridging and one chelating dsep ligands and the geometry around zinc is distorted tetrahedral. The Zn-Se distances range between 2.422 and 2.524 A. From variable-temperature (31)P NMR studies it has been found that monomer and dimer of the complex are in equilibrium in solution via exchange of bridging and chelating ligands. However, at temperature above 40 degrees C the complex exists as a monomer and shows a very sharp peak while with lowering of the temperature the percentage of dimer increases gradually at the expense of monomer. Below -90 degrees C the complex exists as a dimer and two peaks are observed with equal intensities which are due to bridging and chelating ligands. (77)Se NMR spectra of both complexes at -30 degrees C exhibit three doublets due to the presence of monomer and dimer in solution.  相似文献   

2.
The series of complexes [CdX(2)(C(5)H(4)NCOOR)] (X = Cl or Br; R = Me, Et, Pr(n)() or Pr(i)()) and [CdX(2)(C(5)H(4)NCOOR)(2)] (X = I; R = Me, Et, Pr(n)(), or Pr(i)()) have been obtained by the addition reaction of esters of 2-pyridinecarboxylic acid to cadmium(II) halides. X-ray crystal structures of two complexes [CdI(2)(C(5)H(4)NCOOR)(2)], R = Me (10) and R = Pr(n)() (12), have been determined. In both cases, the structure consists of discrete neutral monomeric units where the cadmium atom has a distorted octahedral coordination with CdI(2)N(2)O(2) core, two halides being in cis disposition. Structural information is compared with that deduced from (113)Cd CPMAS NMR experiments. Chemical shift anisotropies are discussed in terms of distortions produced in cadmium octahedra. The orientation of the principal axes of (113)Cd shielding tensor is also analyzed and related to the disposition of ligands in the structures of two analyzed compounds.  相似文献   

3.
Six clusters Ag(8)(micro(8)-X)[Se(2)P(OR)(2)](6)(PF(6)) (R = Et, X = Cl, 1a, X = Br, 1b; R = Pr, X = Cl, 2a, X = Br, 2b; R = (i)Pr, X = Cl, 3a, X = Br, 3b) were isolated from the reaction of [Ag(CH(3)CN)(4)](PF(6)), NH(4)[Se(2)P(OR)(2)], and Bu(4)NX in a molar ratio of 4:3:1 in CH(2)X(2). Positive FAB mass spectra show m/z peaks at 2573.2 for 1a, 2617.3 for 1b, 2740.9 for 2a, 2786.9 for 2b, 2742.3 for 3a, and 2787.0 for 3b due to respective molecular cation, (M - PF(6))(+). (31)P NMR spectra of 1a-3b display a singlet at delta 82.3, 81.5, 82.9, 81.7, 76.3, and 75.8 ppm with a set of satellites (J(PSe) = 661, 664, 652, 652, 656, and 656 Hz, respectively). The X-ray structure (1a-2b) consists of a discrete cationic cluster in which eight silver ions are linked by six diselenophosphate ligands and a central micro(8)-Cl or micro(8)-Br ion with a noncoordinating PF(6)(-) anion. The shape of the molecule is a halide-centered distorted Ag(8) cubic cluster. The dsep ligand exhibits a tetrametallic tetraconnective (micro(2), micro(2)) coordination pattern, and each caps on a square face of the cube. Each silver atom of the cube is coordinated by three selenium atoms and the central chloride or bromide ion. Additionally, molecular orbital calculations at the B3LYP level of the density functional theory have been carried out to study the Ag-micro(8)-X (X = Cl, Br) interactions for cluster cations [Ag(8)(micro(8)-X)[Se(2)P(OR)(2)](6)](+). Calculations show very weak bonding interactions exist between micro(8)-X and Ag atoms of the cube.  相似文献   

4.
Three clusters 1-3, Cu(8)(mu8-Cl)[Se(2)P(OR)(2)](6)(PF(6)) (R= Et, Pr, (i)Pr), were synthesized in high yield from the reaction of [Cu(CH(3)CN)(4)](PF(6)), NH(4)[Se(2)P(OR)(2)], and Bu(4)NCl in a molar ratio of 4:3:1 in diethyl ether. FAB mass spectra show m/z peaks at 2218.10 for 1, 2386.10 for 2, and 2387.34 for 3 which are due to molecular cations, [1-PF(6)]+, [2-PF(6)]+, and [3-PF(6)]+, respectively. (31)P NMR spectra of 1-3 display a singlet at delta 76.48, 76.73, and 69.32 ppm with satellites (J(PSe) = 652, 653, and 648 Hz), respectively. The (77)Se NMR spectra of 1-3 exhibit a doublet peak at -21.7, -16.42, and 2.3 ppm, respectively (J(SeP) = 652 Hz for 1, 653 Hz for 2, and 648 Hz for 3). The X-ray structure (1-3) consists of a discrete cationic cluster in which eight copper ions are linked by six diselenophosphate ligands and a central mu8-Cl ion with a noncoordinating PF(6)(-) anion. The shape of the molecule is a chloride-centered distorted Cu(8) cube in clusters 1 and 2 and a near perfect Cu(8) cube for cluster 3. The dsep ligand exhibits a tetrametallic tetraconnective (mu2, mu2)) coordination pattern, and each occupies a square face of the cube. Each copper atom of the cube is coordinated by three selenium atoms with a strong interaction with the central chloride ion. The observed Cu-Cl distances lie in the range 2.649-2.878 A.  相似文献   

5.
Liu CW  Hung CM  Santra BK  Chu YH  Wang JC  Lin Z 《Inorganic chemistry》2004,43(14):4306-4314
Undecanuclear copper clusters, [Cu(11)(micro(9)-Se)(micro(3)-Br)(3)[Se(2)P(OR)(2)](6)] (R = Et, Pr, (i)Pr) (1a-c), were isolated along with closed-shell ion-centered cubes, [Cu(8)(micro(8)-Br)[Se(2)P(OR)(2)](6)] (PF(6)) (2a-c) and [Cu(8)(micro(8)-Se)[Se(2)P(OR)(2)](6)] (3a-c), from the reaction of [Cu(CH(3)CN)(4)](PF(6)), NH(4)[Se(2)P(OR)(2)], and Bu(4)NBr in a molar ratio of 2:3:2 in CH(2)Br(2). The molecular formulations of these clusters were confirmed by elemental analysis, positive FAB mass spectrometry, and multinuclear NMR ((1)H, (31)P, and (77)Se). (77)Se NMR spectra of Cu(11) clusters (1a-c) are of special interest as two inequivalent selenium nuclei of the diselenophosphate (dsep) ligand exhibit different scalar coupling patterns with the adjacent phosphorus nuclei. X-ray analysis of 1c reveals a Cu(11)Se core stabilized by three bromide and six dsep ligands. The central core adopts the geometry of a 3,3,4,4,4-pentacapped trigonal prism with a selenium atom in the center. The coordination geometry for the nonacoordinate selenium atom is tricapped trigonal prismatic. The X-ray structure 2a or 2c consists of a cationic cluster in which eight copper ions are linked by six diselenophosphate ligands with a central micro(8)-Br ion. The shape of the molecule is a bromide-centered distorted Cu(8) cube. Each diselenophosphate ligand occupies square faces of the cube and adopts a tetrametallic tetraconnective coordination pattern. Each copper atom of the cube is coordinated by three selenium atoms with a strong interaction with the central bromide ion. Molecular orbital calculations at the B3LYP level of the density functional theory have been carried out to study the Cu-micro(9)-Se interactions for clusters [Cu(11)(micro(9)-Se)(micro(3)-X)(3)[Se(2)P(OR)(2)](6)] (X = Br, I). Calculations show that the formal bond order of each Cu-micro(9)-Se bond is slightly smaller than half of those calculated for the terminal Cu-micro(2)-Se bonds.  相似文献   

6.
The reaction of [(3,5-Me(2)-C(5)H(3)N)(2)Zn(ESiMe(3))(2)] (E = Se, Te) with cadmium(II) acetate in the presence of PhESiMe(3) and P(n)Pr(3) at low temperature leads to the formation of single crystals of the ternary nanoclusters [Zn(x)()Cd(10)(-)(x)()E(4)-(EPh)(12)(P(n)()Pr(3))(4)] [E = Se, x = 1.8 (2a), 2.6 (2b); Te, x = 1.8 (3a), 2.6 (3b)] in good yield. The clusters [Zn(3)Hg(7)Se(4)(SePh)(12)(P(n)()Pr(3))(4)] (4) and [Cd(3.7)Hg(6.3)Se(4)(SePh)(12)(P(n)()Pr(3))(4)] (5) can be accessed by similar reactions involving [(3,5-Me(2)-C(5)H(3)N)(2)Zn(SeSiMe(3))(2)] or [(N,N'-tmeda)Cd(SeSiMe(3))(2)] (1) and mercury(II) chloride. The metal silylchalcogenolate reagents are efficient delivery sources of {ME(2)} in cluster synthesis, and thus, the metal ion content of these clusters can be readily moderated by controlling the reaction stoichiometry. The reaction of cadmium acetate with [(3,5-Me(2)-C(5)H(3)N)(2)Zn(SSiMe(3))(2)], PhSSiMe(3), and P(n)()Pr(3) affords the larger nanocluster [Zn(2.3)Cd(14.7)S(4)(SPh)(26)(P(n)()Pr(3))(2)] (6). The incorporation of Zn(II) into {Cd(10)E} (E = Se, Te) and Zn(II) or Cd(II) into {Hg(10)Se} nanoclusters results in a significant blue shift in the energy of the first "excitonic" transition. Solid-state thermolysis of complexes 2 and 3 reveals that these clusters can be used as single-source precursors to bulk ternary Zn(x)Cd(1)(-)(x)E materials as well as larger intermediate clusters and that the metal ion ratio is retained during these reactions.  相似文献   

7.
The first solid-state NMR investigation of dichalcogenoimidodiphosphinato complexes, M[N(R(2)PE)(2)](n), is presented. The single-source precursors for metal-selenide materials, M[N((i)Pr(2)PSe)(2)](2) (M = Zn, Cd, Hg), were studied by solid-state (31)P, (77)Se, (113)Cd, and (199)Hg NMR at 4.7, 7.0, and 11.7 T, representing the only (77)Se NMR measurements, and in the case of Cd[N((i)Pr(2)PSe)(2)](2)(113)Cd NMR measurements, to have been performed on these complexes. Residual dipolar coupling between (14)N and (31)P was observed in solid-state (31)P NMR spectra at 4.7 and 7.0 T yielding average values of R((31)P,(14)N)(eff) = 880 Hz, C(Q)((14)N) = 3.0 MHz, (1)J((31)P,(14)N)(iso) = 15 Hz, alpha = 90 degrees , beta = 26 degrees . The solid-state NMR spectra obtained were used to determine the respective phosphorus, selenium, cadmium, and mercury chemical shift tensors along with the indirect spin-spin coupling constants: (1)J((77)Se,(31)P)(iso), (1)J((111/113)Cd,(77)Se)(iso), (1)J((199)Hg,(77)Se)(iso), and (2)J((199)Hg,(31)P)(iso). Density functional theory magnetic shielding tensor calculations were performed yielding the orientations of the corresponding chemical shift tensors. For this series of complexes the phosphorus magnetic shielding tensors are essentially identical, the selenium magnetic shielding tensors are also very similar with respect to each other, and the magnetic shielding tensors of the central metals, cadmium and mercury, display near axial symmetry demonstrating an expected deviation from local S(4) symmetry.  相似文献   

8.
A series of α-aminopyridines in the form of (2,6-C(6)H(3)N)(R(1))(CHR(2)NR(3)R(4)) (R(1) = R(2) = H R(3) = H R(4) = (i)Pr (L1a), R(4) = (t)Bu (L1b), R(4) = Ph (L1c), R(4) = 2,6-Me(2)C(6)H(3) (L1d), R(4) = 2,6-(i)Pr(2)C(6)H(3) (L1e), R(1) = R(2) = H R(3) = R(4) = Et (L1f), R(1) = H R(2) = Me R(3) = H R(4) = (i)Pr (L2a), R(4) = Ph (L2c), R(4) = 2,6-Me(2)C(6)H(3) (L2d), R(4) = 2,6-(i)Pr(2)C(6)H(3) (L2e), R(1) = Me R(2) = H R(3) = H R(4) = 2,6-(i)Pr(2)C(6)H(3) (L3e)) and β-aminopyridines in the form of (2-C(6)H(4)N)(CH(2)CH(2)NR(1)R(2)) (R(1) = H R(2) = (i)Pr (4a), R(2) = (t)Bu (L4b), R(1) = R(2) = Et (L4f)) have been prepared. Their corresponding halonickel complexes 1a-4f are synthesized by ligand substitution from (DME)NiBr(2) and the molecular structures are characterized. Four types of coordination modes include four-coordinate mononuclear species with one ligand, five-coordinate mononuclear species with two ligands, five-coordinate dinuclear species with two ligands, and a six-coordinate polymeric framework were determined by X-ray crystallography. Using methylaluminoxanes (MAO) as the activator, the nickel complexes can catalyze ethylene polymerization under moderate pressure and ambient temperature. The activity reaches 10(5) g PE mol(-1) Ni h. The PE products with high branching and high crystallinity have M(n) ~ 10(3) with PDI < 2.  相似文献   

9.
Air-stable rhenium(V) oxo complexes are formed when [ReOCl(3)(PPh(3))(2)] is treated with N-heterocyclic carbenes of the 1,3-dialkyl-4,5-dimethylimidazol-2-ylidene type, L(R) (R = Me, Et, i-Pr). Complexes of the compositions [ReO(2)(L(R))(4)](+), [ReOCl(L(R))(4)](2+), or [ReO(OMe)(L(R))(4)](2+) can be isolated depending on the alkyl substituents at the nitrogen atoms of the ligands and the reaction conditions applied. Despite the steric overcrowding of the equatorial coordination spheres of the metal atoms by each of the four carbene ligands, stable complexes with six-coordinate rhenium atoms are obtained. Steric demands of the alkyl groups allow control of the stability of the mono-oxo intermediates. Air-stable cationic complexes of the compositions [ReOCl(L(Me))(4)](2+), [ReOCl(L(Et))(4)](2+), and [ReO(OMe)(L(Me))(4)](2+) have been isolated, whereas reactions of [ReOCl(3)(PPh(3))(2)] or other rhenium(V) precursors with the more bulky 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene (L(i)(-)(Pr)) directly yield the dioxo complex [ReO(2)(L(i)(-)(Pr))(4)](+). X-ray structures of [ReO(2)(L(i)(-)(Pr))(4)][ReO(4)], [ReO(2)(L(i)(-)(Pr))(4)][PF(6)], [ReO(2)(L(Me))(4)][ReO(4)](0.45)[PF(6)](0.55), [ReO(MeOH)(L(Me))(4)][PF(6)](2), and [ReOCl(L(Et))(4)][PF(6)](2) show that the equatorial coordination spheres of the rhenium atoms are essentially planar irrespective of the steric demands of the individual carbene ligands.  相似文献   

10.
The consequences of replacement of the symmetrically chelate ligands in [M(E2CNR2)3] (E = S, Se) complexes of potential 32 symmetry by analogous mixed S,Se unsymmetrical chelates are explored for both small (M = Co) and large (M = In) metal atoms, and R = primary (Et) and secondary (iPr) alkyl substituents by way of low‐temperature single crystal X‐ray studies of [(Co(SSeCNEt2)3] ([Co(Se2CNEt2)3] also determined as datum), and [In(SSeCNR2)3], R = Et, iPr. The structure of [(iPr2N·CS·Se)2] is also recorded.  相似文献   

11.
The first Pd(II) and Pt(II) complexes incorporating diselenophosphate (dsep) ligands are presented. Treatment of M(II) (M = Pd, Pt) salts with two equivalents of the dsep ligand in CH2Cl2 yielded square-planar compounds of the type M[Se2P(OR)2]2 (M = Pd, Pt; R = Et, iPr, nPr) (1a2c). These complexes were characterized by elemental analysis, multinuclear NMR spectroscopy and X-ray diffraction (1b and 2b). The dsep ligands coordinate to the metal in an approximately isobidentate fashion and form four-membered Se–P–Se–M chelate rings. Structural elucidations indicated that minute differences exist in the M–Se bond distances and these were observed from solution 31P NMR studies, which exhibited two sets of satellites arising from one-bond coupling to 77Se nuclei. A packing diagram showed a chain-like motif which was composed of square-planar M[Se2P(OR)2]2 units and occurred via non-covalent Se?Se secondary interactions.  相似文献   

12.
Reaction of (PhPSe2)2(Woollins reagent) with NaOR (R = Me, Et, (i)Pr) gives the non-symmetric phosphonodiselenoato anions [Ph(RO)PSe2]- which can be complexed to a range of metals. The nickel complex Ni[Ph(MeO)PSe2]2 adopts a square-planar ML2 structure while the cadmium complex Cd[Ph(MeO)PSe2]2 displays a dimeric M2L4 structure. Two different lead complexes are observed, one consisting of PbL2 units joined by Pb...Se interactions to form distinct dimeric pairs. The other displays a novel dimeric structure built around a central four-membered Pb2Se2 ring. All new compounds have been characterised spectroscopically (31P, 1H, 13C NMR, IR, mass spectroscopy), by elemental analysis and five demonstrative X-ray structures are reported.  相似文献   

13.
A series of hafnocene complexes (eta5-C5Me4R1)(eta5-C5Me4R2)HfCl2 with [R1, R2] = [H, H] (1), [Me, H] (2), [Me, Me] (3), [Et, Me] (4), [(i)Pr, Me] (5), [SiMe(3), Me] (6), [(t)Bu, Me] (7), [(n)Bu, Me] (8), [(i)Bu, Me] (9), [Et, Et] (10), [(n)Bu, (n)Bu] (11), [(i)Bu, (i)Bu] (12) was tested as catalyst precursors for propylene oligomerization. Upon activation with methylaluminoxane or [Ph(3)C][B(C(6)F(5))(4)]/Al(i)Bu(3), complexes 2-4 and 8-12 catalyzed the dimerization of propylene to produce 4-methyl-1-pentene with selectivities ranging from 23.9 to 61.6 wt % in the product mixture. The selectivity was dependent on the nature of the substituents R(1) and R(2), with the highest value found for (eta5-C5Me4(i)Bu)2HfCl2 (12). Rapid deactivation was observed for 5-7, whereas (eta5-C5Me4H)2HfCl2 (1) polymerized propylene. 4-Methyl-1-pentene is proposed to form by repeated 1,2-insertion of propylene into the hafnocene methyl cation, followed by selective beta-methyl elimination. Detailed analysis of the byproduct distribution (isobutene, 1-pentene, 2-methyl-1-pentene, 2,4-dimethyl-1-pentene, 4-methyl-1-heptene, 4,6-dimethyl-1-heptene), determined by gas chromatography, was performed with the aid of a stochastic simulation involving rate constants for the propagation by insertion, beta-hydride elimination, and beta-methyl elimination. The rate of termination is dependent on the structure of the growing chain of the active species as well as on the bulkiness of the cyclopentadienyl ligands. The selectivity highly depends on the reaction conditions (pressure, temperature, concentration of methylaluminoxane). The rates of beta-methyl elimination leading to 4-methyl-1-pentene were proportional to propylene pressure for 2-4 and 8-10 but practically independent from propylene pressure for the sterically bulkier derivatives 11-12.  相似文献   

14.
INTRODUCTIONThesynthesisofpolynuclearcopper lanthanoidcomplexesisofspecialinterestforsev eralreasons〔1-4〕.Thesecomplexesareim...  相似文献   

15.
The insertion reaction of CS2 with Mg(NR2)2 (R= Et, iPr), MgR′2 (R′= Et, Ph) and R″MgBr (R″= iPr, Ph) respectively lead solid products, Mg(S2CNR2)2(THF)n ( 1 : R= Et, n=2; 2 : R= iPr, n=1), Mg(S2C′R)2(THF)2 ( 3 : ′R= Et, 4 : ′R= Ph), BrMg(S2C″R) (THF)3 ( 5 : ″R= iPr, 6 : ″R= Ph) in which the inserted carbon disulfides act as terminal chelating ligands. These compounds were characterized with 1H, 13C NMR, IR spectroscopy, mass spectrometry, elemental analyses, and X‐ray crystallography.  相似文献   

16.
The planar complexes [Ni(II)(pyN(2)(R2))(OH)](-), containing a terminal hydroxo group, are readily prepared from N,N'-(2,6-C(6)H(3)R(2))-2,6-pyridinedicarboxamidate(2-) tridentate pincer ligands (R(4)N)(OH), and Ni(OTf)(2). These complexes react cleanly and completely with carbon dioxide in DMF solution in a process of CO(2) fixation with formation of the bicarbonate product complexes [Ni(II)(pyN(2)(R2))(HCO(3))](-) having η(1)-OCO(2)H ligation. Fixation reactions follow second-order kinetics (rate = k(2)'[Ni(II)-OH][CO(2)]) with negative activation entropies (-17 to -28 eu). Reactions were monitored by growth and decay of metal-to-ligand charge-transfer (MLCT) bands at 350-450 nm. The rate order R = Me > macro > Et > Pr(i) > Bu(i) > Ph at 298 K (macro = macrocylic pincer ligand) reflects increasing steric hindrance at the reactive site. The inherent highly reactive nature of these complexes follows from k(2)' ≈ 10(6) M(-1) s(-1) for the R = Me system that is attenuated by only 100-fold in the R = Ph complex. A reaction mechanism is proposed based on computation of the enthalpic reaction profile for the R = Pr(i) system by DFT methods. The R = Et, Pr(i), and Bu(i) systems display biphasic kinetics in which the initial fast process is followed by a slower first order process currently of uncertain origin.  相似文献   

17.
Thirty-two Ru(porp)L(2) complexes have been synthesized, where porp = the dianion of meso-tetramesitylporphyrin (TMP) or meso-tetrakis(4-methylphenyl)porphyrin (H(2)T-pMe-PP), and L = a thiol, a sulfide, a disulfide, or a trisulfide. Species studied were with RSH [R = Me, Et, (n)Pr, (i)Pr, (t)Bu, Bn (benzyl), and Ph], RSR (R = Me, Bn), RSSR (R = Me, Et, (n)Pr, Bn) and MeSS(t)Bu, and RSSSR (R = Me, Bn). All the species except two, which were the isolated Ru(T-pMe-PP)((t)BuSH)(2) and Ru(TMP)(MeSSMe)(2), were characterized in situ. The disulfide complex was characterized by X-ray analysis. (1)H NMR data for the coordinated thiols are the first reported within metalloporphyrin systems, and are especially informative because of the upfield shifts of the axial sulfur-containing ligands due to the porphyrin π-ring current effect, which is also present in the di- and trisulfide species. The disulfide in the solid state structure of Ru(TMP)(MeSSMe)(2) is η(1)(end-on) coordinated, the first example of such bonding in a nontethered, acyclic dialkyl disulfide; (1)H-(1)H EXSY NMR data in solution show that the species undergoes 1,2-S-metallotropic shifts. Stepwise formation of the bis(disulfide) complex from Ru(TMP)(MeCN)(2) in solution occurs with a cooperativity effect, resembling behavior of Fe(II)-porphyrin systems where crystal field effects dominate, but ligand trans-effects are more likely in the Ru system. The η(1)(end-on) coordination mode is also favored for the trisulfide ligand. Discussed also are the remarkable linear correlations that exist between the ring-current shielding shifts for the axial ligand C(1) protons of Ru(porp)(RS(x)R)(2) and x (the number of S atoms). The Introduction briefly reviews literature on Ru- and Fe porphyrins (including heme proteins) with sulfur-containing ligands or substrates, and relationships between our findings and this literature are discussed throughout the paper.  相似文献   

18.
The reaction system of [Et4N]2MoSe4, FeCI2 and R2NCS2Na in DMF-CH3CN at ambient temperature yielded the Mo-Fe-Se cluster compounds MoFe3Se4(μ-R2NCS2)2(R2NCS2)4 (R2=Me2(1), Et2(2), C4H8(3)) with MoFe3Se4 core. X-ray diffraction analyses of 2 revealed that the molecular structure contains a distorted cubane like M4Se4 core with two bridged and four chelated Et2NCS2- ligands. The cyclic voltammetric studies of the compounds showed the reversible mul-tielectron-transfer sequence.  相似文献   

19.
1INTRODUCTIONInrecentyears,aseriesoflanthanide aluminiumcomplexeswhichareactiveforpoly merizationofolfins〔1〕havebeenreported....  相似文献   

20.
Two copper-mercury-chalcogenide clusters [Hg(15)Cu(20)E(25)(PPr(3))(18)] (1, E = S; 2, E = Se) are synthesized in good yield from the reaction of (Pr(3)P)(3)Cu-ESiMe(3) and (Pr(3)P)(2).Hg(OAc)(2) at low temperatures. Single-crystal X-ray analyses illustrate that the two ternary clusters are isomorphous and consist of a phosphine-stabilized core of mixed Hg, Cu, and E centers. Thermolysis of 1 leads to the formation of mercury metal and various forms of copper-sulfide. The copper-indium-sulfide cluster [Cu(6)In(8)S(13)Cl(4)(PEt(3))(12)] (3) is similarly prepared in 50% yield from (Et(3)P)(3)Cu-SSiMe(3), InCl(3), and S(SiMe(3))(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号