首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six clusters Ag(8)(micro(8)-X)[Se(2)P(OR)(2)](6)(PF(6)) (R = Et, X = Cl, 1a, X = Br, 1b; R = Pr, X = Cl, 2a, X = Br, 2b; R = (i)Pr, X = Cl, 3a, X = Br, 3b) were isolated from the reaction of [Ag(CH(3)CN)(4)](PF(6)), NH(4)[Se(2)P(OR)(2)], and Bu(4)NX in a molar ratio of 4:3:1 in CH(2)X(2). Positive FAB mass spectra show m/z peaks at 2573.2 for 1a, 2617.3 for 1b, 2740.9 for 2a, 2786.9 for 2b, 2742.3 for 3a, and 2787.0 for 3b due to respective molecular cation, (M - PF(6))(+). (31)P NMR spectra of 1a-3b display a singlet at delta 82.3, 81.5, 82.9, 81.7, 76.3, and 75.8 ppm with a set of satellites (J(PSe) = 661, 664, 652, 652, 656, and 656 Hz, respectively). The X-ray structure (1a-2b) consists of a discrete cationic cluster in which eight silver ions are linked by six diselenophosphate ligands and a central micro(8)-Cl or micro(8)-Br ion with a noncoordinating PF(6)(-) anion. The shape of the molecule is a halide-centered distorted Ag(8) cubic cluster. The dsep ligand exhibits a tetrametallic tetraconnective (micro(2), micro(2)) coordination pattern, and each caps on a square face of the cube. Each silver atom of the cube is coordinated by three selenium atoms and the central chloride or bromide ion. Additionally, molecular orbital calculations at the B3LYP level of the density functional theory have been carried out to study the Ag-micro(8)-X (X = Cl, Br) interactions for cluster cations [Ag(8)(micro(8)-X)[Se(2)P(OR)(2)](6)](+). Calculations show very weak bonding interactions exist between micro(8)-X and Ag atoms of the cube.  相似文献   

2.
Three clusters 1-3, Cu(8)(mu8-Cl)[Se(2)P(OR)(2)](6)(PF(6)) (R= Et, Pr, (i)Pr), were synthesized in high yield from the reaction of [Cu(CH(3)CN)(4)](PF(6)), NH(4)[Se(2)P(OR)(2)], and Bu(4)NCl in a molar ratio of 4:3:1 in diethyl ether. FAB mass spectra show m/z peaks at 2218.10 for 1, 2386.10 for 2, and 2387.34 for 3 which are due to molecular cations, [1-PF(6)]+, [2-PF(6)]+, and [3-PF(6)]+, respectively. (31)P NMR spectra of 1-3 display a singlet at delta 76.48, 76.73, and 69.32 ppm with satellites (J(PSe) = 652, 653, and 648 Hz), respectively. The (77)Se NMR spectra of 1-3 exhibit a doublet peak at -21.7, -16.42, and 2.3 ppm, respectively (J(SeP) = 652 Hz for 1, 653 Hz for 2, and 648 Hz for 3). The X-ray structure (1-3) consists of a discrete cationic cluster in which eight copper ions are linked by six diselenophosphate ligands and a central mu8-Cl ion with a noncoordinating PF(6)(-) anion. The shape of the molecule is a chloride-centered distorted Cu(8) cube in clusters 1 and 2 and a near perfect Cu(8) cube for cluster 3. The dsep ligand exhibits a tetrametallic tetraconnective (mu2, mu2)) coordination pattern, and each occupies a square face of the cube. Each copper atom of the cube is coordinated by three selenium atoms with a strong interaction with the central chloride ion. The observed Cu-Cl distances lie in the range 2.649-2.878 A.  相似文献   

3.
Three clusters [Ag11(mu9-Se)(mu3-I)3{Se2P(OR)2}6] (R = Et, 1; iPr, 2; 2Bu, 3) were isolated from the reaction of [Ag(CH3CN)4](PF6), NH4[Se2P(OR)2], and Bu4NI in a molar ratio of 4:3:1 in CH2Cl2 in 47-55% yield. Compounds 1 and 2 can also be synthesized with high yield from the reaction of Ag10(Se)[Se2P(OR)2]8 with 8 equiv of Bu4NI. In the positive fast atom bombardment mass spectra of 1-3, two major peaks that correspond to the intact molecule with the loss of an iodide ion, [Ag11(mu9-Se)(mu3-I)(2){Se2P(OR)2}6]+, and a diselenophosphate ligand, [Ag11(mu9-Se)(mu3-I)3{Se2P(OR)2}5]+, were identified. Single-crystal X-ray analyses of 2 and 3 reveal an Ag11Se core stabilized by three iodide anions and six diselenophosphato ligands in a tetrametallic tetraconnective (mu2,mu2) coordination mode. The central core adopts the geometry of a 3,3,4,4,4-pentacapped trigonal prism with a selenium atom in the center. In addition, weak intermolecular Se...I interactions exist in 2 and form a one-dimensional polymeric chain structure. Furthermore, all compounds exhibit orange-red luminescence in both the solid state and solution.  相似文献   

4.
Complexes [Zn[Se(2)P(OEt)(2)](2)]( infinity ) (1) and [Zn(2)[Se(2)P(O(i)Pr)(2)](4)] (2) are prepared from the reaction of Zn(ClO(4))(2).6H(2)O and (NH(4))[Se(2)P(OR)(2)] (R = Et and (i)Pr) in a molar ratio of 1:2 in deoxygenated water at room temperature. Positive FAB mass spectra show m/z peaks at 968.8 (Zn(2)L(3)(+)) and 344.8 (ZnL(+)) for 1 and m/z at 1052.8 (Zn(2)L(3)(+)) for 2. (1)H NMR spectra exhibit chemical shifts at delta 1.43 and 4.23 ppm for 1 and 1.41 and 4.87 ppm for 2 due to Et and (i)Pr group of dsep ligands. While the solid-state structure of compound 1 is a one-dimensional polymer via symmetrically bridging dsep ligands, complex 2 in the crystalline state exists as a dimer. In both 1 and 2, zinc atoms are connected by two bridging dsep ligands with an additional chelating ligand at each zinc atom. The dsep ligands exhibit bimetallic biconnective (micro(2), eta(2)) and monometallic biconnective (eta(2)) coordination patterns. Thus, each zinc atom is coordinated by four selenium atoms from two bridging and one chelating dsep ligands and the geometry around zinc is distorted tetrahedral. The Zn-Se distances range between 2.422 and 2.524 A. From variable-temperature (31)P NMR studies it has been found that monomer and dimer of the complex are in equilibrium in solution via exchange of bridging and chelating ligands. However, at temperature above 40 degrees C the complex exists as a monomer and shows a very sharp peak while with lowering of the temperature the percentage of dimer increases gradually at the expense of monomer. Below -90 degrees C the complex exists as a dimer and two peaks are observed with equal intensities which are due to bridging and chelating ligands. (77)Se NMR spectra of both complexes at -30 degrees C exhibit three doublets due to the presence of monomer and dimer in solution.  相似文献   

5.
The first discrete, selenium-centered tetranuclear zinc cluster [Zn4(mu4-Se)[Se2P(OPr)2]6] was isolated and characterized. The cluster consists of six edge-bridged dsep ligands with four zinc atoms in a slightly distorted tetrahedron and a mu4-Se atom in the center. In addition, 12 mu2-bridging selenium atoms form a Se12 icosahedron. From variable-temperature 31P NMR studies, it was observed that the cluster [Zn4(Se)[Se2P(OPr)2]6] is partly decomposed to [Zn[Se2P(OPr)2]2] and the monomeric species [Zn[Se2P(OPr)2]2] is further in equilibrium with its dimer [Zn[Se2P(OPr)2]2]2.  相似文献   

6.
A new type of double-butterfly [[Fe(2)(mu-CO)(CO)(6)](2)(mu-SZS-mu)](2-) (3), a dianion that has two mu-CO ligands, has been synthesized from dithiol HSZSH (Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2)), [Fe(3)(CO)(12)], and Et(3)N in a molar ratio of 1:2:2 at room temperature. Interestingly, the in situ reactions of dianions 3 with various electrophiles affords a series of novel linear and macrocyclic butterfly Fe/E (E=S, Se) cluster complexes. For instance, while reactions of 3 with PhC(O)Cl and Ph(2)PCl give linear clusters [[Fe(2)(mu-PhCO)(CO)(6)](2)(mu-SZS-mu)] (4 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2)) and [[Fe(2)(mu-Ph(2)P)(CO)(6)](2)(mu-SZS-mu)] (5 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2)), reactions with CS(2) followed by treatment with monohalides RX or dihalides X-Y-X give both linear clusters [[Fe(2)(mu-RCS(2))(CO)(6)](2)(mu-SZS-mu)] (6 a-e: Z=CH(2)(CH(2)OCH(2))(1,2)CH(2); R=Me, PhCH(2), FeCp(CO)(2)) and macrocyclic clusters [[Fe(2)(CO)(6)](2)(mu-SZS-mu)(mu-CS(2)YCS(2)-mu)] (7 a-e: Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2); Y=(CH(2))(2-4), 1,3,5-Me(CH(2))(2)C(6)H(3), 1,4-(CH(2))(2)C(6)H(4)). In addition, reactions of dianions 3 with [Fe(2)(mu-S(2))(CO)(6)] followed by treatment with RX or X-Y-X give linear clusters [[[Fe(2)(CO)(6)](2)(mu-RS)(mu(4)-S)](2)(mu-SZS-mu)] (8 a-c: Z=CH(2)(CH(2)OCH(2))(1,2)CH(2); R=Me, PhCH(2)) and macrocyclic clusters [[[Fe(2)(CO)(6)](2)(mu(4)-S)](2)(mu-SYS-mu)(mu-SZS-mu)] (9 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2); Y=(CH(2))(4)), and reactions with SeCl(2) afford macrocycles [[Fe(2)(CO)(6)](2)(mu(4)-Se)(mu-SZS-mu)] (10 d: Z=CH(2)(CH(2)OCH(2))(3)CH(2)) and [[[Fe(2)(CO)(6)](2)(mu(4)-Se)](2)(mu-SZS-mu)(2)] (11 a-d: Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2)). Production pathways have been suggested; these involve initial nucleophilic attacks by the Fe-centered dianions 3 at the corresponding electrophiles. All the products are new and have been characterized by combustion analysis and spectroscopy, and by X-ray diffraction techniques for 6 c, 7 d, 9 b, 10 d, and 11 c in particular. X-ray diffraction analyses revealed that the double-butterfly cluster core Fe(4)S(2)Se in 10 d is severely distorted in comparison to that in 11 c. In view of the Z chains in 10 a-c being shorter than the chain in 10 d, the double cluster core Fe(4)S(2)Se in 10 a-c would be expected to be even more severely distorted, a possible reason for why 10 a-c could not be formed.  相似文献   

7.
Six Mo(IV)-Cu(II) complexes, [Cu(tpa)](2)[Mo(CN)(8)]·15H(2)O (1, tpa = tris(2-pyridylmethyl)amine), [Cu(tren)](2)[Mo(CN)(8)]·5.25H(2)O (2, tren = tris(2-aminoethyl)amine), [Cu(en)(2)][Cu(0.5)(en)][Cu(0.5)(en)(H(2)O)][Mo(CN)(8)]·4H(2)O (3, en = ethylenediamine), [Cu(bapa)](3)[Mo(CN)(8)](1.5)·12.5H(2)O (4, bapa = bis(3-aminopropyl)amine), [Cu(bapen)](2)[Mo(CN)(8)]·4H(2)O (5, bapen = N,N'-bis(3-aminopropyl)ethylenediamine), and [Cu(pn)(2)][Cu(pn)][Mo(CN)(8)]·3.5H(2)O (6, pn = 1,3-diaminopropane), were synthesized and characterized. Single-crystal X-ray diffraction analyses show that 1-6 have different structures varying from trinuclear clusters (1-2), a one-dimensional belt (3), two-dimensional grids (4-5), to a three-dimensional structure (6). Magnetic and ESR measurements suggest that 1-6 exhibit thermally reversible photoresponsive properties on UV light irradiation through a Mo(IV)-to-Cu(II) charge transfer mechanism. A trinuclear compound [Cu(II)(tpa)](2)[Mo(V)(CN)(8)](ClO(4)) (7) was synthesized as a model of the photoinduced intermediate.  相似文献   

8.
Jia D  Zhao J  Pan Y  Tang W  Wu B  Zhang Y 《Inorganic chemistry》2011,50(15):7195-7201
The polyselenidoarsenates [Fe(phen)(3)][As(2)Se(6)] (1), [Zn(phen)(dien)][As(2)Se(6)]·2phen (2), [{Mn(phen)(2)}(2)(μ-η(2),η(2)-AsSe(4))](2)[As(2)Se(6)]·H(2)O (3), and [Ni(phen)(3)][As(2)Se(2)(μ-Se(3))(μ-Se(5))] (4) (dien = diethylenetriamine and phen = 1,10-phenanthroline) were prepared by the reaction of As(2)O(3), Se, dien, and phen in the presence of transition metals in a methanol solvent under solvothermal conditions. Compounds 1-3 consist of [As(2)Se(6)](2-) anions with [Fe(phen)(3)](2+), [Zn(phen)(dien)](2+), and [{Mn(phen)(2)}(2)(μ-η(2),η(2)-AsSe(4))](+) complex counter cations, respectively. The [As(2)Se(6)](2-) anion is formed from two As(III)Se(3) trigonal pyramids linked through two Se-Se bonds. Compound 3 is the first example of a mixed-valent selenidoarsenate(III,V) and exhibits the coexistence of As(III)Se(3) trigonal pyramidal and As(V)Se(4) tetrahedral units. Compound 4 is composed of a helical chain of [As(2)Se(2)(μ-Se(3))(μ-Se(5))(2-)](∞) and octahedral [Ni(phen)(3)](2+) cations. The [As(2)Se(2)(μ-Se(3))(μ-Se(5))(2-)](∞) chain is constructed from AsSe(+) units alternatively linked by μ-Se(3)(2-) and μ-Se(5)(2-) bridging ligands. When the structures of compounds 1-4 are compared, the transition metal ions show different structural directing effects during the synthesis of arsenic polyselenides in methanol. Compounds 1, 2, 3, and 4 exhibit semiconducting properties with band gaps of 1.88, 2.29, 1.82, and 2.01 eV, respectively.  相似文献   

9.
A neutral selenium donor ligand, [CpFe(CO)(2)P(Se)(OR)(2)] is used for the construction of Cu(I) and Ag(I) complexes with a well-defined coordination environment. Four clusters [M{CpFe(CO)(2)P(Se)(OR)(2)}(3)](PF(6)), (where M = Cu, R = (n)Pr, ; R = (i)Pr, and M = Ag, R = (n)Pr, ; R = (i)Pr, ) are isolated from the reaction of [M(CH(3)CN)(4)(PF(6))] (where M = Cu or Ag) and [CpFe(CO)(2)P(Se)(OR)(2)] in a molar ratio of 1 : 3 in acetonitrile at 0 degrees C. The reaction of [CpFe(CO)(2)P(Se)(O(i)Pr)(2)] with cuprous halides in acetone produce two mixed-metal, Cu(I)(2)Fe(II)(2) clusters, [Cu(mu-X) {CpFe(CO)(2)P(Se)(O(i)Pr)(2)}](2) (X = Cl, ; Br, ). All six clusters have been fully characterized spectroscopically ((1)H, (13)C, (31)P, and (77)Se NMR, IR), and by elemental analyses. X-Ray crystal structures of and consist of discrete cationic clusters in which three iron-selenophosphito fragments are linked to the central copper or silver atom via selenium atoms. Both clusters and crystallize in the noncentrosymmetric, hexagonal space group P6[combining macron]2c. The coordination geometry around the copper or silver atom is perfect trigonal-planar with Cu-Se and Ag-Se distances, 2.3505(7) and 2.5581(7) A, respectively. X-Ray crystallography also reveals that each copper center in neutral heterometallic clusters and is trigonally coordinated to two halide ions and a selenium atom from the selenophosphito-iron moiety. The structures can also be delineated as a dimeric unit which is generated by an inversion center and has a Cu(2)X(2) parallelogram core. The dihedral angle between the Cu(2)X(2) plane and the plane composed of Cp ring is found to be 24.62 and 84.58 degrees for compound and , respectively. Hence the faces of two opposite Cp rings are oriented almost perpendicular to the Cu(2)X(2) plane in , but are close to be parallel in . This is the first report of the coordination chemistry of the anionic selenophosphito moiety [(RO)(2)PSe](-), the conjugated base of a secondary phosphine selenide, which acts as a bridging ligand with P-coordination on iron and Se-coordination to copper or silver.  相似文献   

10.
Hexarhenium(III) complexes with terminal isothiocyanate ligands, [(n-C(4)H(9))(4)N](4)[Re(6)(mu(3)-S)(8)(NCS)(6)] (1) and (L)(4)[Re(6)(mu(3)-Se)(8)(NCS)(6)] (L(+) = PPN(+) (2a), (n-C(4)H(9))(4)N(+) (2b)), have been prepared by three different methods. Complex 1 was prepared by the reaction of [(n-C(4)H(9))(4)N](4)[Re(6)(mu(3)-S)(8)Cl(6)] with molten KSCN at 200 degrees C, while 2b was obtained by refluxing the chlorobenzene-DMF (2:1 v/v) solution of [Re(6)(mu(3)-Se)(8)(CH(3)CN)(6)](SbF(6))(2) and [(n-C(4)H(9))(4)N]SCN. The [Re(6)(mu(3)-Se)(8)(NCS)(6)](4)(-) anion was also obtained from a mixture of Cs(2)[Re(6)(mu(3)-Se)(8)Br(4)] and KSCN in C(2)H(5)OH by a mechanochemical activation at room temperature for 20 h and isolated as 2a. The X-ray structures of 1 and 2a.4DMF have been determined (1, C(70)H(144)N(10)S(14)Re(6), monoclinic, space group P2(1)/n (No. 14), a = 14.464(7) A, b = 22.059(6) A, c = 16.642(8) A, beta = 113.62(3) degrees, V = 4864(3) A(3), Z = 2; 2a.4DMF, C(162)H(144)N(14)O(4)P(8)S(6)Se(8)Re(6), triclinic, space group P1 (No. 2), a = 15.263(2) A, b = 16.429(2) A, c = 17.111(3) A, alpha = 84.07(1) degrees, beta = 84.95(1) degrees, gamma = 74.21(1) degrees, V = 4098.3(8) A(3), Z = 1). All the NCS(-) ligands in both complexes are coordinated to the metal center via nitrogen site with the Re-N distances in the range of 2.07-2.13 A. The redox potentials of the reversible Re(III)(6)/Re(III)(5)Re(IV) process in acetonitrile are +0.84 and +0.70 V vs. Ag/AgCl for [Re(6)(mu(3)-S)(8)(NCS)(6)](4)(-) and [Re(6)(mu(3)-Se)(8)(NCS)(6)](4)(-), respectively, which are the most positive among the known hexarhenium complexes with six terminal anionic ligands. The complexes show strong red luminescence with the emission maxima (lambda(max)/nm), lifetimes (tau(em)/micros), and quantum yields (phi(em)) being 745 and 715, 10.4 and 11.8, and 0.091 and 0.15 for 1 and 2b, respectively, in acetonitrile. The data reasonably well fit in the energy-gap plots of other hexarhenium(III) complexes. The temperature dependence of the emission spectra and tau(em) of 1 and [(n-C(4)H(9))(4)N](4)[Re(6)(mu(3)-S)(8)Cl(6)] are also reported.  相似文献   

11.
Liu CW  Hung CM  Santra BK  Wang JC  Kao HM  Lin Z 《Inorganic chemistry》2003,42(25):8551-8556
The cluster (Cu8(mu8-Se)[S2P(OEt)2]6)0.54(Cu6[S2P(OEt)2]6)0.46 (2) was prepared in 78% yield from the reaction of Cu8(Se)[Se2P(OPr)2]6 (1) and NH4S2P(OEt)2 in toluene. The central selenide ion in 2 was characterized by 77Se NMR at delta -976 ppm. The simulated solid-state 31P NMR spectrum shows two components with an intensity ratio close to 55:45. The peak centered at 100.7 ppm is assigned to the 31P nuclei in the hexanuclear copper cluster, and that at 101.1 ppm is due to the octanuclear copper cluster. The single-crystal X-ray diffraction analysis confirms the cocrystallization structures of Cu8(Se)[S2P(OEt)2]6 (54%) and Cu6[S2P(OEt)2]6 (46%) (2: trigonal, space group R3, a=21.0139(13) A, c=11.404(3) A, gamma=120 degrees, Z=3). While the octanuclear copper cluster possesses a 3-fold crystallographic axis which pass through the Cu2, Se, and Cu(2A) atoms, the six copper atoms having the S6 point group symmetry in Cu6[S2P(OEt)2]6 form a compressed octahedron. The Cu8(mu8-Se) cubic core in Cu8(mu8-Se)[S2P(OEt)2]6 is larger in size than the metal core in Cu8(mu8-Se)[Se2P(OPr)2]6 (1) although the bite distance of the Se-containing bridging ligand is larger than that of the S ligand. To understand the nature of the structure contraction of the metal core and metal-mu8-Se interaction, molecular orbital calculations have been carried out at the B3LYP level of density functional theory. MO calculations suggest that Cu-mu8-Se interactions are not very strong and a half bond can be formally assigned to each Cu-mu8-Se bond. Moderate Cu...Cu repulsion exists, and it is the bridging ligands that are responsible for the observed Cu...Cu contacts. Hence, the S-ligating copper clusters have greater Cu...Cu separations because each Cu carries more positive charge in the presence of the more electronegative S-containing ligands.  相似文献   

12.
Zhao J  Liang J  Chen J  Pan Y  Zhang Y  Jia D 《Inorganic chemistry》2011,50(6):2288-2293
Novel cobalt polyselenidoarsenate [Co(phen)(3)][As(2)Se(2)(μ-Se(3))(μ-Se(5))] (1; phen = 1,10-phenanthroline) was methanolothermally synthesized by the reaction of CoCl(2), As(2)O(3), and Se templated by phen in a CH(3)OH solvent at 130 °C. The same reaction in a H(2)O solvent yielded cobalt selenidoarsenate [Co(phen)(3)](2)[As(8)Se(14)] (2). In 1, the AsSe(+) units are alternately joined by the μ-Se(3)(2-) and μ-Se(5)(2-) bridging ligands to form a novel helical polyselenidoarsenate chain [As(2)Se(2)(μ-Se(3))(μ-Se(5))(2-)](∞). In 2, eight pyramidal AsSe(3) units are connected via corner sharing into the new member of the selenidoarsenate aggregate [As(8)Se(14)](4-) with a condensation grade of 0.571, which represents the first discrete selenidoarsenate(III) with a condensation grade of above 0.50. The octahedral complex [Co(phen)(3)](2+) is formed in situ to act as a countercation in compounds 1 and 2. 1 and 2 exhibit steep absorption band gaps at 2.09 and 2.16 eV, respectively.  相似文献   

13.
The reactions of the previously reported cluster complexes [Re(6)(mu(3)-Se)(8)(PEt(3))(5)I]I, trans-[Re(6)(mu(3)-Se)(8)(PEt(3))(4)I(2)], and cis-[Re(6)(mu(3)-Se)(8)(PEt(3))(4)I(2)] with the [Re(6)(mu(3)-Se)(8)](2+) core with CO in the presence of AgSbF(6) afforded the corresponding cluster carbonyls [Re(6)(mu(3)-Se)(8)(PEt(3))(5)(CO)][SbF(6)](2) (), trans-[Re(6)(mu(3)-Se)(8)(PEt(3))(4)(CO)(2)][SbF(6)](2) (), and cis-[Re(6)(mu(3)-Se)(8)(PEt(3))(4)(CO)(2)][SbF(6)](2) (). Infrared spectroscopy indicated weakening of the bond in CO, suggesting the existence of backbonding between the cluster core and the CO ligand(s). Electrochemical studies focusing on the reversible, one-electron oxidation of the cluster core revealed a large increase in the oxidation potential upon going from the acetonitrile derivatives to their carbonyl analogs, consistent with the depleted electron density of the cluster core upon CO ligation. Disparities between the IR spectra and oxidation potential between and indicate that electronic differences exist between sites trans and cis to the location of a ligand of interest. The active role played by the Se atoms in influencing the cluster-to-CO bonding interactions is suggested through this result and density functional (DF) computational analysis. The computations indicate that molecular orbitals near the HOMO account for backbonding interactions with a high percentage of participation of Se orbitals.  相似文献   

14.
Reaction of AgBF(4), KNH(2), K(2)Se, Se, and [2.2.2]-cryptand in acetonitrile yields [K([2.2.2]-cryptand)](4)[Ag(4)(Se(2)C(2)(CN)(2))(4)] (1). In the unit cell of 1 there are four [K([2.2.2]-cryptand)](+) units and a tetrahedral Ag(4) anionic core coordinated in mu(1)-Se, mu(2)-Se fashion by each of four mns ligands (mns = maleonitrilediselenolate, [Se(2)C(2)(CN)(2)](2)(-)). Reaction of AgNO(3), Na(2)(mnt) (mnt = maleonitriledithiolate, [S(2)C(2)(CN)(2)](2)(-)), and [2.2.2]-cryptand in acetonitrile yields [Na([2.2.2]-cryptand)](4)[Ag(4)(mnt)(4)].0.33MeCN (2). The Ag(4) anion of 2 is analogous to that in 1. Reaction of AgNO(3), Na(2)(mnt), and [NBu(4)]Br in acetonitrile yields [NBu(4)](4)[Ag(4)(mnt)(4)] (3). The anion of 3 also comprises an Ag(4) core coordinated by four mnt ligands, but the Ag(4) core is diamond-shaped rather than tetrahedral. Reaction of [K([2.2.2]-cryptand)](3)[Ag(mns)(Se(6))] with KNH(2) and [2.2.2]-cryptand in acetonitrile yields [K([2.2.2]-cryptand)](3)[Ag(mns)(2)].2MeCN (4). The anion of 4 comprises an Ag center coordinated by two mns ligands in a tetrahedral arrangement. Reaction of AgNO(3), 2 equiv of Na(2)(mnt), and [2.2.2]-cryptand in acetonitrile yields [Na([2.2.2]-cryptand)](3)[Ag(mnt)(2)] (5). The anion of 5 is analogous to that of 4. Electronic absorption and infrared spectra of each complex show behavior characteristic of metal-maleonitriledichalcogenates. Crystal data (153 K): 1, P2/n, Z = 2, a = 18.362(2) A, b = 16.500(1) A, c = 19.673(2) A, beta = 94.67(1) degrees, V = 5941(1) A(3); 2, P4, Z = 4, a= 27.039(4) A, c = 15.358(3) A, V = 11229(3) A(3); 3, P2(1)/c, Z = 6, a = 15.689(3) A, b = 51.924(11) A, c = 17.393(4) A, beta = 93.51(1) degrees, V = 14142(5) A(3); 4, P2(1)/c, Z = 4, a = 13.997(1) A, b = 21.866(2) A, c = 28.281(2) A, beta = 97.72(1) degrees, V = 8578(1) A(3); 5, P2/n, Z = 2, a = 11.547(2) A, b = 11.766(2) A, c = 27.774(6) A, beta = 91.85(3) degrees, V = 3772(1) A(3).  相似文献   

15.
Face-capped octahedral [Re(6)Se(8)(CN)(6)](3-/4-) clusters are used in place of octahedral [M(CN)(6)](3-/4-) complexes for the synthesis of microporous Prussian blue type solids with adjustable porosity. The reaction between [Fe(H(2)O)(6)](3+) and [Re(6)Se(8)(CN)(6)](4-) in aqueous solution yields, upon heating, Fe(4)[Re(6)Se(8)(CN)(6)](3).36H(2)O (4). A single-crystal X-ray analysis confirms the structure of 4 to be a direct expansion of Prussian blue (Fe(4)[Fe(CN)(6)](3).14H(2)O), with [Re(6)Se(8)(CN)(6)](4-) clusters connected through octahedral Fe(3+) ions in a cubic three-dimensional framework. As in Prussian blue, one out of every four hexacyanide units is missing from the structure, creating sizable, water-filled cavities within the neutral framework. Oxidation of (Bu(4)N)(4)[Re(6)Se(8)(CN)(6)] (1) with iodine in methanol produces (Bu(4)N)(3)[Re(6)Se(8)(CN)(6)] (2), which is then metathesized to give the water-soluble salt Na(3)[Re(6)Se(8)(CN)(6)] (3). Reaction of [Co(H(2)O)(6)](2+) or [Ni(H(2)O)(6)](2+) with 3 in aqueous solution affords Co(3)[Re(6)Se(8)(CN)(6)](2).25H(2)O (5) or Ni(3)[Re(6)Se(8)(CN)(6)](2).33H(2)O (6). Powder X-ray diffraction data show these compounds to adopt structures based on the same cubic framework present in 4, but with one out of every three cluster hexacyanide units missing as a consequence of charge balance. In contrast, reaction of [Ga(H(2)O)(6)](3+) with 3 gives Ga[Re(6)Se(8)(CN)(6)].6H(2)O (7), wherein charge balance dictates a fully occupied cubic framework enclosing much smaller cavities. The expanded Prussian blue analogues 4-7 can be fully dehydrated, and retain their crystallinity with extended heating at 250 degrees C. Consistent with the trend in the frequency of framework vacancies, dinitrogen sorption isotherms show porosity to increase along the series of representative compounds 7, Ga(4)[Re(6)Se(8)(CN)(6)](3).38H(2)O, and 6. Furthermore, all of these phases display a significantly higher sorption capacity and surface area than observed in dehydrated Prussian blue. Despite incorporating paramagnetic [Re(6)Se(8)(CN)(6)](3-) clusters, no evidence for magnetic ordering in compound 6 is apparent at temperatures down to 5 K. Reactions related to those employed in preparing compounds 4-6, but carried out at lower pH, produce the isostructural phases H[cis-M(H(2)O)(2)][Re(6)Se(8)(CN)(6)].2H(2)O (M = Fe (8), Co (9), Ni (10)). The crystal structure of 8 reveals a densely packed three-dimensional framework in which [Re(6)Se(8)(CN)(6)](4-) clusters are interlinked through a combination of protons and Fe(3+) ions.  相似文献   

16.
The first face-capped octahedral clusters with 25 metal-based valence electrons are shown to provide versatile building units capable of engaging in magnetic exchange coupling. Reactions of [Re(5)OsSe(8)Cl(6)](3-) and [Re(4)Os(2)Se(8)Cl(6)](2-) with NaCN in a melt of NaNO(3) or KCF(3)SO(3) afford the 24-electron clusters [Re(5)OsSe(8)(CN)(6)](3-) and [Re(4)Os(2)Se(8)(CN)(6)](2-). The 13C NMR spectrum of a 13C-labeled version of the latter species indicates a 1:2 mixture of cis and trans isomers. Cyclic voltammograms of the clusters in acetonitrile display reversible [Re(5)OsSe(8)(CN)(6)](3-/4-), cis-[Re(4)Os(2)Se(8)(CN)(6)](2-/3-), and trans-[Re(4)Os(2)Se(8)(CN)(6)](2-/3-) couples at E(1/2) = -1.843, -0.760, and -1.031 V vs FeCp(2)(0/+), respectively, in addition to other redox processes. Accordingly, reduction of [Re(5)OsSe(8)(CN)(6)](3-) with sodium amalgam and [Re(4)Os(2)Se(8)(CN)(6)](2-) with cobaltocene produces the 25-electron clusters [Re(5)OsSe(8)(CN)(6)](4-) and [Re(4)Os(2)Se(8)(CN)(6)](3-). EPR spectra of these S = 1/2 species in frozen DMF solutions exhibit isotropic signals with g = 1.46 for the monoosmium cluster and g = 1.74 and 1.09 for the respective cis and trans isomers of the diosmium cluster. In each case, results from DFT calculations show the unpaired spin to delocalize to some extent into the pi* orbitals of the cyanide ligands, suggesting the possibility of magnetic superexchange. Reaction of [Re(5)OsSe(8)(CN)(6)](3-) with [Ni(H(2)O)(6)](2+) in aqueous solution generates the porous Prussian blue analogue Ni(3)[Re(5)OsSe(8)(CN)(6)](2).32H(2)O; however, the tendency of the 25-electron clusters to oxidize in water prohibits their use in reactions of this type. Instead, a series of cyano-bridged assemblies, [Re(6-n)Os(n)Se(8)[CNCu(Me(6)tren)](6)](9+) (n = 0, 1, 2; Me(6)tren = tris(2-(dimethylamino)ethyl)amine), were synthesized to permit comparison of the exchange coupling abilities of clusters with 23-25 electrons. As expected, the results of magnetic susceptibility measurements show no evidence for exchange coupling in the assemblies containing the 23- and 24-electron clusters, but reveal the presence of weak ferromagnetic coupling in [Re(4)Os(2)Se(8)[CNCu(Me(6)tren)](6)](9+). Assuming all cluster-Cu(II) exchange interactions to be equivalent, the data were fit to give an estimated coupling strength of J = 0.4 cm(-1). To our knowledge, the ability of such clusters to participate in magnetic exchange coupling has never previously been demonstrated.  相似文献   

17.
Liu X  Guo GC  Wu AQ  Cai LZ  Huang JS 《Inorganic chemistry》2005,44(12):4282-4286
Solvothermal reactions of copper(I) cyanide with tetramethylammonium salts in anhydrous tetrahydrofuran (THF) lead to two novel halogeno(cyano)cuprates, namely, [Me(4)N][Cu(3)(CN)(2)Br(2)] (1) with a 1-D ribbon motif and [Me(4)N](2)[Cu(4)(CN)(5)Cl] (2) with a 3-D nanoporous framework. In 1, four Cu(I) ions are connected via two mu-Br and two mu(3)-Br atoms into a neutral [Cu(4)Br(4)] cluster, and such clusters are further double bridged by [Cu(CN)(2)](2-) linkers to form a 1-D ribbonlike chain. While in 2, Cu(I) ions are connected via mu-CN and mu(3)-CN ligands and mu-Cl atoms into a 2-D fluctuant sheet along the a-c plane, and these sheets are further linked by another kind of mu-CN ligand to form a 3-D nanoporous framework in whose channels reside [Me(4)N](+) cations. Results of optical and luminescent studies indicate that both two complexes are potential materials for semiconductors and long-lived highly luminescent materials.  相似文献   

18.
Syntheses of five types of tungsten-iron-sulfur/selenium clusters, namely, incomplete cubanes, single cubanes, edge-bridged double cubanes (EBDCs), P(N)-type clusters, and double-cuboidal clusters, have been devised using the concept of template-assisted assembly. The template reactant is six-coordinate [(Tp*)W(VI)S(3)](1-) [Tp* = tris(3,5-dimethylpyrazolyl)hydroborate(1-)], which in the assembly systems organizes Fe(2+/3+) and sulfide/selenide into cuboidal [(Tp*)WFe(2)S(3)] or cubane [(Tp*)WFe(3)S(3)Q] (Q = S, Se) units. With appropriate terminal iron ligation, these units are capable of independent existence or may be transformed into higher-nuclearity species. Selenide is used as a surrogate for sulfide in cluster assembly in order to determine by X-ray structures the position occupied by an external chalcogenide nucleophile or an internal chalcogenide atom in the product clusters. Specific incorporation of selenide is demonstrated by the formation of [WFe(3)S(3)Se](2+/3+) cubane cores. Reductive dimerization of the cubane leads to the EBDC core [W(2)Fe(6)S(6)Se(2)](2+) containing μ(4)-Se sites. Reaction of these species with HSe(-) affords the P(N)-type cores [W(2)Fe(6)S(6)Se(3)](1+), in which selenide occupies μ(6)-Se and μ(2)-Se sites. The reaction of [(Tp*)WS(3)](1-), FeCl(2), and Na(2)Se yields the double-cuboidal [W(2)Fe(4)S(6)Se(3)](2+/0) core with μ(2)-Se and μ(4)-Se bridges. It is highly probable that in analogous sulfide-only assembly systems, external and internal sulfide reactants occupy corresponding positions in the cluster products. The results further demonstrate the viability of template-assisted cluster synthesis inasmuch as the reduced (Tp*)WS(3) unit is present in all of the clusters. Structures, zero-field M?ssbauer data, and redox potentials are presented for each cluster type.  相似文献   

19.
Reactions of a dirhenium tetra(sulfido) complex [PPh(4)](2)[ReS(L)(mu-S)(2)ReS(L)] (L = S(2)C(2)(SiMe(3))(2)) with a series of group 8-11 metal complexes in MeCN at room temperature afforded either the cubane-type clusters [M(2)(ReL)(2)(mu(3)-S)(4)] (M = CpRu (2), PtMe(3), Cu(PPh(3)) (4); Cp = eta(5)-C(5)Me(5)) or the incomplete cubane-type clusters [M(ReL)(2)(mu(3)-S)(mu(2)-S)(3)] (M = (eta(6)-C(6)HMe(5))Ru (5), CpRh (6), CpIr (7)), depending on the nature of the metal complexes added. It has also been disclosed that the latter incomplete cubane-type clusters can serve as the good precursors to the trimetallic cubane-type clusters still poorly precedented. Thus, treatment of 5-7 with a range of metal complexes in THF at room temperature resulted in the formation of novel trimetallic cubane-type clusters, including the neutral clusters [[(eta(6)-C(6)HMe(5))Ru][W(CO)(3)](ReL)(2)(mu(3)-S)(4)], [(CpM)[W(CO)(3)](ReL)(2)(mu(3)-S)(4)] (M = Rh, Ir), [(Cp*Ir)[Mo(CO)(3)](ReL)(2)(mu(3)-S)(4)], [[(eta(6)-C(6)HMe(5))Ru][Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)], and [(Cp*Ir)[Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)] (13) along with the cationic clusters [(Cp*Ir)(CpRu)(ReL)(2)(mu(3)-S)(4)][PF(6)] (14) and [(Cp*Ir)[Rh(cod)](ReL)(2)(mu(3)-S)(4)][PF(6)] (cod = 1,5-cyclooctadiene). The X-ray analyses have been carried out for 2, 4, 7, 13, and the SbF(6) analogue of 14 (14') to confirm their bimetallic cubane-type, bimetallic incomplete cubane-type, or trimetallic cubane-type structures. Fluxional behavior of the incomplete cubane-type and trimetallic cubane-type clusters in solutions has been demonstrated by the variable-temperature (1)H NMR studies, which is ascribable to both the metal-metal bond migration in the cluster cores and the pseudorotation of the dithiolene ligand bonded to the square pyramidal Re centers, where the temperatures at which these processes proceed have been found to depend upon the nature of the metal centers included in the cluster cores.  相似文献   

20.
The reaction between the previously reported site-differentiated cluster solvate [Re(6)(mu(3)-Se)(8)(PEt(3))(5)(MeCN)](SbF(6))(2) (1) with pyridyl-based ditopic ligands 4,4'-trimethylenedipyridine (2), 1,2-bis(4-pyridyl)ethane (3), and (E)-1,2-bis(4-pyridyl)ethene (4) afforded cluster complexes of the general formula [Re(6)(mu(3)-Se)(8)(PEt(3))(5)(L)](SbF(6))(2) (5-7), where L represents one of the pyridyl-based ligands. Reacting these cluster complex-based ligands with the fully solvated cluster complex [Re(6)(mu(3)-Se)(8)(MeCN)(6)](SbF(6))(2) (8) produced dendritic arrays of the general formula {Re(6)(mu(3)-Se)(8)[Re(6)(mu(3)-Se)(8)(PEt(3))(5)(L)](6)}(SbF(6))(14) (9-11), each featuring six circumjacent [Re(6)(mu(3)-Se)(8)(PEt(3))(5)](2+) units bridged to a [Re(6)(mu(3)-Se)(8)](2+) core cluster by the pyridyl-based ligands. Electrochemical studies using a thin-layer electrochemical cell revealed cluster-based redox events in these cluster arrays. For 9 (L = 2), one reversible oxidation event corresponding to the removal of 7 electrons was observed, indicating noninteraction or extremely weak interactions between the clusters. For 10 (L = 3), two poorly resolved oxidation waves were found. For 11 (L = 4), two reversible oxidation events, corresponding respectively to the removal of 1 and 6 electrons, were observed with the 1-electron oxidation event occurring at a potential 150 mV more positive than the 6-electron oxidation. These electrochemical studies suggest intercluster coupling in 11 via through-bond electronic delocalization, which is consistent with electronic spectroscopic studies of this same molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号