首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
We report the anatase titanium dioxide(101) surface adsorption of sp~3-hybridized gas molecules,including NH_3,H_2O and CH_4,using first-principles plane-wave ultrasoft pseudopotential based on the density functional theory.The results show that it is much easier for a surface with oxygen vacancies to adsorb gas molecules than it is for a surface without oxygen vacancies.The main factor affecting adsorption stability and energy is the polarizability of molecules,and adsorption is induced by surface oxygen vacancies of the negatively charged center.The analyses of state densities and charge population show that charge transfer occurs at the molecule surface upon adsorption and that the number of transferred charge reduces in the order of N,O and C.Moreover,the adsorption method is chemical adsorption,and adsorption stability decreases in the order of NH_3,H_2O and CH_4.Analyses of absorption and reflectance spectra reveal that after absorbed CH_4 and H_2O,compared with the surface with oxygen vacancy,the optical properties of materials surface,including its absorption coefficients and reflectivity index,have slight changes,however,absorption coefficient and reflectivity would greatly increase after NH_3 adsorption.These findings illustrate that anatase titanium dioxide(101) surface is extremely sensitive to NH_3.  相似文献   

2.
本文研究了四-(对-羰基苯基)卟啉(TCPP)在H2O/CF3COOH、H2O/CCI3COH和H2O/CH3COOH溶液中的UV-Vis吸收光谱、荧光光谱和拉曼光谱。实验表明,TCPP在H2O/CH3COOH和H2O/CCI3COOH溶液中以分子态的N-质子化卟啉H8TCPP^2+存在,而在H2O/CF3COOH中则形成H8TCPP^2+的J-聚集体。J-聚集体显示,UV-Vis吸收光谱和荧光光  相似文献   

3.
赵健  何满潮  胡祥星  高炜 《中国物理 B》2017,26(7):79101-079101
Carbon monoxide(CO) is a gaseous pollutant with adverse effects on human health and the environment. Kaolinite is a natural mineral resource that can be used for different applications, including that it can also be used for retention of pollutant gases. The adsorption behavior of carbon monoxide molecules on the(001) surface of kaolinite was studied systematically by using density-functional theory and supercell models for a range coverage from 0.11 to 1.0 monolayers(ML). The CO adsorbed on the three-fold hollow, two-fold bridge, and one-fold top sites of the kaolinite(001) was tilted with respect to the surface. The strongest adsorbed site of carbon monoxide on the kaolinite(001) surface is the hollow site followed by the bridge and top site. The adsorption energy of CO decreased when increasing the coverage, thus indicating the lower stability of surface adsorption due to the repulsion of neighboring CO molecules. In addition to the adsorption structures and energetics, the lattice relaxation, the electronic density of states, and the different charge distribution have been investigated for different surface coverages.  相似文献   

4.
基于密度泛函理论系统研究了碳化钛(TiC)和氮化钛(TiN)非极性(001)表面吸附气体分子和原子的性能。鉴于这些材料拥有不同的电子结构特征,发现受电子的CO分子或未饱和的O和H原子在TiC(001)和TiN(001)表面吸附于不同的活性位点,而供电子的NH3和H2O气体分子或完全饱和的O2和H2分子仅倾向与两个表面的金属原子位点结合。这些吸附特性可能与此类材料表面的电子结构有关。  相似文献   

5.
张建东  杨春  陈元涛  张变霞  邵文英 《物理学报》2011,60(10):106102-106102
鉴于碳纳米管复合材料具有较强气敏性,该性质对于指导剧毒气体探测器的研发具有重要意义,因此,本文采用密度泛函方法对CO气体在本征、金原子掺杂(8,0)单壁碳纳米管的吸附行为进行研究. 通过对吸附体系的几何、电子结构研究表明,CO分子在金原子掺杂的碳纳米管外壁的金原子位置处的吸附能力远大于CO在本征碳纳米管处的吸附,此外,还计算了两种典型位置的电子密度、态密度,进一步支持了掺金碳纳米管对CO气体具有超强的敏感性,因此,金原子掺杂的碳纳米管有望成为探测CO气体的新一代气敏元件. 关键词: 碳纳米管 CO 金原子 掺杂  相似文献   

6.
采用包含色散力校正的密度泛函理论(DFT-D)方法系统地研究了气体分子(O2, H2, NO, CO, CO2, SO2, H2S, H2O)在Co掺杂单层BN(Co-BN)表面的吸附, 分析了吸附小分子的几何结构, 吸附能, 电荷转移等情况. 结果表明: 1) CO等气体分子主要吸附在Co及其近邻六元环的顶位, 吸附结构的电荷转移表明掺杂原子Co对BN衬底的气敏特性有较好的调制作用; 2) 在Co-BN表面吸附的O2和CO较易被活化, 表明Co-BN可能是一种对CO氧化有较好催化活性的新型催化材料.  相似文献   

7.
Pu(100)表面吸附CO2的密度泛函研究   总被引:1,自引:0,他引:1       下载免费PDF全文
蒙大桥  罗文华  李赣  陈虎翅 《物理学报》2009,58(12):8224-8229
采用广义梯度密度泛函理论的改进Perdew-Burke-Ernzerh方法结合周期性层晶模型,研究了CO2分子在Pu(100)面上的吸附和解离.吸附能和几何构型的计算表明,CO2以穴位C4O4构型吸附最为有利,吸附能为1.48 eV.布居分析和态密度分析表明,CO2与Pu表面相互作用的本质主要是CO2分子的杂化轨道2πμ与Pu5f,Pu6d,Pu7s轨道通过强电子转移和弱重叠杂化的方式相互作用而生成了新的化学键.计算的CO2→CO+O解离能垒为0.66 eV,解离吸附能为2.65 eV, 表明在一定热激活条件下CO2分子倾向于发生解离性吸附.O2,H2,CO和CO2在Pu (100)面吸附的比较分析表明,较低温度下的吸附强度顺序依次为O2,CO,CO2,H2;较高温度下的吸附强度顺序依次为O2,CO2,CO,H2. 关键词: 密度泛函理论 Pu (100) 2')" href="#">CO2 吸附和解离  相似文献   

8.
Since the development of Scanning Tunnelling Microscopy (STM) technique, considerable attention has been devoted to various molecules adsorbed on various surfaces. Also, a new concept emerged with molecules on surfaces considered as nano machines by themselves. In this context, a thorough knowledge of surfaces and adsorbed molecules at an atomic scale are thus particularly invaluable. The present work describes the first Density Functional Theory (DFT) study of adsorption of CO, CO2 and NO molecules on a BaTiO3 surface following a first preliminary calculation of O and O2 adsorption on the same surface. In the previously considered work, we found that a (0 0 1) surface with BaO termination is more stable than the one with TiO2-termination. Consequently, we extended our study to CO, CO2 and NO molecules adsorbed on a (0 0 1) surface with BaO termination. The present calculation was performed on a (1 × 1) cell with one monolayer of adsorbed molecules. Especially, a series of cases implying CO molecules adsorbed in various geometrical configurations has been examined. The corresponding adsorption energy varies in the range of −0.17 to −0.10 eV. The adsorption energy of a CO2 molecule directly located above an O surface atom (called Os) is of the order of −0.18 eV. The O-C distance length is then 1.24 Å and the O-C-O and O-C-Os angles are 134.0° and 113.0°, respectively. For NO adsorption, the most important induced structural changes are the followings: (i) the N-O bond is broken when a NO molecule is absorbed on a Ba-Os bridge site. In that case, N and O atoms are located above an O and a Ba surface atom, respectively, whereas the O-Ba-Os and N-Os-Ba angles are 106.5° and 63.0°, respectively. The N-O distance is as large as 2.58 Å and the adsorption energy is as much as −2.28 eV. (ii) In the second stable position, the NO molecule has its N atom adsorbed above an Os atom, the N-O axis being tilted toward the Ba atom. The N-Os-Ba angle is then 41.1° while the adsorption energy is only −0.10 eV. At last, the local densities of states around C, O as well as N atoms of the considered adsorbed molecules have also been discussed.  相似文献   

9.
采用第一性原理结合周期性平板模型的方法,对O_2在完整和缺陷WO_3(001)表面的吸附行为进行了研究.结果表明:WO_3(001)完整表面上吸附态的O_2不易成为表面氧化反应的活性氧物种,当吸附质与表面作用时,将优先与表面晶格氧(O_t)成键,进而形成表面缺陷态,体系呈现金属性,电导率增大.比较O_2在缺陷表面上各吸附构型的吸附能发现,O_2的吸附倾向于发生在缺陷位置(W_v)上,且表现为氧气分子中的两个氧原子均与缺陷位W_v作用,形成新的活性氧物种(O_2~-);吸附后表面被氧化,电导率降低.  相似文献   

10.
The adsorption of CO, O2, and H2O was studied on both the (111) and [6(111) × (100)] crystal faces of iridium. The techniques used were LEED, AES, and thermal desorption. Marked differences were found in surface structures and heats of adsorption on these crystal faces. Oxygen is adsorbed in a single bonding state on the (111) face. On the stepped iridium surface an additional bonding state with a higher heat of adsorption was detected which can be attributed to oxygen adsorbed at steps. On both (111) and stepped iridium crystal faces the adsorption of oxygen at room temperature produced a (2 × 1) surface structure. Two surface structures were found for CO adsorbed on Ir(111); a (√3 × √3)R30° at an exposure of 1.5–2.5 L and a (2√3 × 2√3)R30° at higher coverage. No indication for ordering of adsorbed CO was found on the Ir(S)-[6(111) × (100)] surface. No significant differences in thermal desorption spectra of CO were found on these two faces. H2O is not adsorbed at 300 K on either iridium crystal face. The reaction of CO with O2 was studied on Ir(111) and the results are discussed. The influence of steps on the adsorption behaviour of CO and O2 on iridium and the correlation with the results found previously on the same platinum crystal faces are discussed.  相似文献   

11.
二氧化碳作为温室气体中最重要的组成部分,其含量的变化将直接影响全球气候变化,在燃烧后气体中选择性捕获CO2,对减缓因CO2浓度过高引发的环境问题具有十分重要的意义.本文采用第一性原理计算的方法,研究了V2CO2 MXene材料对CO2的选择性吸附性能.首先研究了不同官能团V2CTX MXene材料的结构和性质,发现V2CO2具有良好的稳定性.后研究了V2CO2对CO2的吸附行为,结果表明,当CO2被水平吸附时,V2CO2对CO2气体分子的吸附能力较强且均满足在高性能吸附剂表面吸附CO2的理想值(-0.42 eV-0.82 eV),可以适用于探测/捕获CO2气体分子.此外,进一步研究了相同条件下V<...  相似文献   

12.
Adsorption of CO and coadsorption of O and CO on Pt3Sn(1 1 1) was studied using periodic DFT calculations. Calculations were performed on Pt(1 1 1) by using the same set of parameters and their results were used as reference basis. The calculations showed that the most stable configuration with the minimum energy for coadsorption of CO and O is CO adsorbed atop Pt and O adsorbed on fcc Pt2Sn hollow site and that the decrease in the adsorption strength of the system at a total surface coverage of 0.5 ML is by 0.063 eV as a result of coadsorption, with respect to the adsorption of one species individually. Results show that the interaction between the adsorbed CO and O is short range on PtSn alloy, contrary to that on pure Pt, and this is mainly related to stronger Sn–O bonds compared to Pt–O bonds which eventually reduce the surface strain at the coadsorption structure. There is a pronounced effect of total surface concentration on the adsorption energy of coadsorbed species; the adsorption strength is not directly proportional to the surface coverage but is also related to the distribution of the coadsorbed species on the surface.  相似文献   

13.
李敏  张俊英  张跃  王天民 《中国物理 B》2012,21(6):67302-067302
The adsorptions of CO and 02 molecules individually on the stoichiometric Cu-terminatcd Cu20 (111) surface are investigated by first-principles calculations on the basis of the density functional theory. The calculated results indicate that the CO molecule preferably coordinates to the Cu2 site through its C atom with an adsorption energy of-1.69 eV, whereas the 02 molecule is most stably adsorbed in a tilt type with one O atom coordinating to the Cu2 site and the other O atom coordinating to the Cul site, and has an adsorption energy of -1.97 eV. From the analysis of density of states, it is observed that Cu 3d transfers electrons to 2π orbital of the CO molecule and the highest occupied 5σ orbital of the CO molecule transfers electrons to the substrate. The sharp band of Cu 4s is delocalized when compared to that before the CO molecule adsorption, and overlaps substantially with bands of the adsorbed CO molecule. There is a broadening of the 2π orbital of the 02 molecule because of its overlapping with the Cu 3d orbital, indicating that strong 3d-2π interactions are involved in the chemisorption of the 02 molecule on the surface.  相似文献   

14.
A study of the adsorption/desorption behavior of CO, H2O, CO2 and H2 on Ni(110)(4 × 5)-C and Ni(110)-graphite was made in order to assess the importance of desorption as a rate-limiting step for the decomposition of formic acid and to identify available reaction channels for the decomposition. The carbide surface adsorbed CO and H2O in amounts comparable to the clean surface, whereas this surface, unlike clean Ni(110), did not appreciably adsorb H2. The binding energy of CO on the carbide was coverage sensitive, decreasing from 21 to 12 kcalmol as the CO coverage approached 1.1 × 1015 molecules cm?2 at 200K. The initial sticking probability and maximum coverage of CO on the carbide surface were close to that observed for clean Ni(110). The amount of H2, CO, CO2 and H2O adsorbed on the graphitized surface was insignificant relative to the clean surface. The kinetics of adsorption/desorption of the states observed are discussed.  相似文献   

15.
Progress of scanning tunneling microscopy (STM) allowed to handle various molecules adsorbed on a given surface. New concepts emerged with molecules on surfaces considered as nano machines by themselves. In this context, a thorough knowledge of surfaces and adsorbed molecules at an atomic scale is thus particularly invaluable. In this work, within the framework of density functional theory (DFT), we present an electronic and structural ab initio study of a BaTiO3 (001) surface (perovskite structure) in its paraelectric phase. As far as we know the atomic and molecular adsorption of oxygen at surface is then analyzed for the first time in the literature. Relaxation is taken into account for several layers. Its analysis for a depth of at least four layers enables us to conclude that a reasonable approximation for a BaTiO3 (001) surface is provided with a slab made up of nine plans. The relative stability of two possible terminations is considered. By using a kinetic energy cut off of 400 eV, we found that a surface with BaO termination is more stable than with TiO2 termination. Consequently, a surface with BaO termination was chosen to adsorb either O atom or O2 molecule and the corresponding calculations were performed with a coverage 1 on a (1×1) cell. A series of cases with O2 molecule adsorbed in various geometrical configurations are also analyzed. For O2, the most favorable adsorption is obtained when the molecule is placed horizontally, with its axis, directed along the Ba-Ba axis and with its centre of gravity located above a Ba atom. The corresponding value of the adsorption energy is -9.70 eV per molecule (-4.85 eV per O atom). The molecule is then rather extended since the O–O distance measures 1.829 ?. By comparison, the adsorption energy of an O atom directly located above a Ba atom is only -3.50 eV. Therefore we are allowed to conclude that the O–O interaction stabilizes atomic adsorption. Also the local densities of states (LDOS) corresponding to various situations are discussed in the present paper. Up to now, we are not aware of experimental data to be compared to our calculated results.  相似文献   

16.
We have studied the property of single-walled ZnO nanotubes with adsorbed water molecules, and theoretically designed a new sensor for detecting water molecules using single-walled ZnO nanotubes using a combination of density functional theory and the non-equilibrium Green's function method. Details of the geometric structures and adsorption energies of the H 2 O molecules on the ZnO nanotube surface have been investigated. Our computational results demonstrate that the formation of hydrogen bonding between the H 2 O molecules and the ZnO nanotube, and adsorption energies of the H 2 O molecules on the ZnO nanotube are larger than the adsorption energies of other gas molecules present in the atmospheric environment. Moreover, the current-voltage curves of the ZnO nanotube with and without H 2 O molecules adsorbed on its surface are calculated, the results of which showed that the H 2 O molecules form stable adsorption configurations that could lead to the decrease in current. These results suggest that the single-walled ZnO nanotubes are able to detect and monitor the presence of H 2 O molecules by applying bias voltages.  相似文献   

17.
碳纳米管(CNT)对于气体有超强的敏感性,可用于制备基于CNT的有害气体传感器.本文采用基于密度泛函理论的第一性原理研究Au掺杂CNT对NO和O_2的吸附特性.对吸附能、最终吸附距离、电荷转移量、态密度等的分析显示,Au掺杂使得CNT与NO间的交互作用明显增强,其中N原子端靠近CNT交互作用更强.禁带宽度和电荷密度分析表明,相比于NO分子中O原子端或者O2吸附,NO分子中N原子端与CNT发生交互作用会使体系导电性变化更为明显.说明Au掺杂能够很好地屏蔽空气中O_2对CNT导电性的影响,Au掺杂CNT作为NO气敏材料是可行的.  相似文献   

18.
摘要 金属氧化物气敏传感材料一直是当今的热门研究课题,锐钛矿相金属氧化物XO2(X=Ti,Sn,Zr,Ir)是具有传感特性的常见材料。光学气敏效应是指气体分子吸附在气敏传感材料上,与表面氧空位发生氧化还原反应,由于光学性质发生改变而检测出气体的成分和浓度,因此,氧化还原反应的强弱是反应传感性能的核心原因。本文采用密度泛函理论(DFT)体系下广义梯度近似(GGA)第一性原理平面波超软赝势方法,分析和计算了含氧空位的锐钛矿相XO2(X=Ti,Sn,Zr,Ir)表面特性。通过以NH3为目标分子,研究分子表面吸附引起的氧化还原反应的机理,分析不相同的氧化物表面的几何结构、吸附能、态密度、差分电荷密度、电荷布居、电荷转移、光学性质等。研究发现:目标分子稳定吸附在氧化物表面后改变材料光学性质。SnO2表面对分子的吸附能最大,IrO2表面与分子的吸附距离最小。NH3分子与表面间存在电荷转移,其转移电子数目大小为:IrO2>TiO2>ZrO2>SnO2,氧化物表面氧化性的大小为:IrO2氧空位>TiO2氧空位>ZrO2氧空位>SnO2氧空位;比较吸收谱和反射谱发生变化最为明显的是TiO2表面。结论,在可见光范围内,波长在400~530nm时,SnO2表面光学气敏传感效应更好。而在530~760nm范围TiO2表面光学气敏传感效应更好。  相似文献   

19.
本文采用第一性原理计算首先研究了Ti3C2O2和V2CO2与CH4气体分子之间的相互作用,发现Ti3C2O2和V2CO2对CH4的吸附较弱属于物理吸附,不适宜用作探测CH4。在此基础上研究了电荷调控下CH4气体分子与Ti3C2O2和V2CO2之间的相互作用。结果表明:随着体系电荷态的增加,Ti3C2O2和V2CO2对CH4气体分子的吸附作用逐渐增加变为化学吸附。当体系电荷态大于或等于-2时,CH4气体分子在Ti3C2O2和V2CO2表面可以被有效捕获。撤去电荷后,Ti3C2O2、V2CO2与CH4气体分子之间的吸附恢复至物理吸附,CH4气体分子易脱附。因此,通过调控Ti3C2O2和V2CO2的电荷态,可以简单地实现CH4的捕获与释放。Ti3C2O2和V2CO2有望成为CH4探测或捕获材料。  相似文献   

20.
采用基于密度泛函理论的第一性原理方法研究了单个CO和O2气体分子在金属原子修饰石墨烯表面的吸附和反应过程.结果表明:空位缺陷结构的石墨烯能够提高金属原子的稳定性,金属原子掺杂的石墨烯体系能够调控气体分子的吸附特性.通入混合的CO和O2作为反应气体,石墨烯表面容易被吸附性更强的O2分子占据,进而防止催化剂的CO中毒.此外,对比分析两种催化机理(Langmuir-Hinshelwood和Eley-Rideal)对CO氧化反应的影响.与其它金属原子相比,Al原子掺杂的石墨烯体系具有极低的反应势垒(0.4 e V),更有助于CO氧化反应的迅速进行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号