首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

In this paper, a new framework is presented for the dynamic modeling and control of fully actuated multibody systems with open and/or closed chains as well as disturbance in the position, velocity, acceleration, and control input of each joint. This approach benefits from the computed torque control method and embedded fractional algorithms to control the nonlinear behavior of a multibody system. The fractional Brunovsky canonical form of the tracking error is proposed for a generalized divide-and-conquer algorithm (GDCA) customized for having a shortened memory buffer and faster computational time. The suite of a GDCA is highly efficient. It lends itself easily to the parallel computing framework, that is used for the inverse and forward dynamic formulations. This technique can effectively address the issues corresponding to the inverse dynamics of fully actuated closed-chain systems. Eventually, a new stability criterion is proposed to obtain the optimal torque control using the new fractional Brunovsky canonical form. It is shown that fractional controllers can robustly stabilize the system dynamics with a smaller control effort and a better control performance compared to the traditional integer-order control laws.

  相似文献   

2.
3.
Bayer  Fabia  Leine  Remco I. 《Nonlinear dynamics》2023,111(9):8439-8466

In this paper, we aim to study nonlinear time-periodic systems using the Koopman operator, which provides a way to approximate the dynamics of a nonlinear system by a linear time-invariant system of higher order. We propose for the considered system class a specific choice of Koopman basis functions combining the Taylor and Fourier bases. This basis allows to recover all equations necessary to perform the harmonic balance method as well as the Hill analysis directly from the linear lifted dynamics. The key idea of this paper is using this lifted dynamics to formulate a new method to obtain stability information from the Hill matrix. The error-prone and computationally intense task known by sorting, which means identifying the best subset of approximate Floquet exponents from all available candidates, is circumvented in the proposed method. The Mathieu equation and an n-DOF generalization are used to exemplify these findings.

  相似文献   

4.
We describe the formulation of a method for fluid-structure interaction involving the coupling of moving and/or flexible solid structures with multiphase flows in the framework of the Level Contour Reconstruction Method. We present an Eulerian-based numerical procedure for tracking the motion and interaction of a liquid-gas interface with a fluid-solid interface in the Lagrangian frame together with the evaluation of the fluid transport equations coupled to those for the solid transport, namely the left Cauchy-Green strain tensor field, in the Eulerian frame. To prevent excessive dissipation due to the convective nature of the solid transport equation, a simple incompressibility constraint for the strain field is enforced. A single grid structure is used for both the fluid and solid phases which allows for a simple and natural coupling of the fluid and solid dynamics. Several benchmark tests are performed to show the accuracy of the numerical method and which demonstrate accurate results compared to several of those in the existing literature. In particular we show that surface tension effects including contact line dynamics on the deforming solid phase can be properly simulated. The three-phase interaction of a droplet impacting on a flexible cantilever is investigated in detail. The simulations follow the detailed motion of the droplet impact (and subsequent deformation, breakup, and fall trajectory) along with the motion of the deformable solid cantilever due to its own weight as well as due to the force of the droplet impact.  相似文献   

5.
Time-stepping algorithms and their implementations are a critical component within the solution of time-dependent partial differential equations (PDEs). In this article, we present a generic framework – both in terms of algorithms and implementations – that allows an almost seamless switch between various explicit, implicit and implicit–explicit (IMEX) time-stepping methods. We put particular emphasis on how to incorporate time-dependent boundary conditions, an issue that goes beyond classical ODE theory but which plays an important role in the time-stepping of the PDEs arising in computational fluid dynamics. Our algorithm is based upon J.C. Butcher's unifying concept of general linear methods that we have extended to accommodate the family of IMEX schemes that are often used in engineering practice. In the article, we discuss design considerations and present an object-oriented implementation. Finally, we illustrate the use of the framework by applications to a model problem as well as to more complex fluid problems.  相似文献   

6.
ABSTRACT

In this work, we provide an integrated pipeline for the model-order reduction of turbulent flows around parametrised geometries in aerodynamics. In particular, free-form deformation is applied for geometry parametrisation, whereas two different reduced-order models based on proper orthogonal decomposition (POD) are employed in order to speed-up the full-order simulations: the first method exploits POD with interpolation, while the second one is based on domain decomposition. For the sampling of the parameter space, we adopt a Greedy strategy coupled with Constrained Centroidal Voronoi Tessellations, in order to guarantee a good compromise between space exploration and exploitation. The proposed framework is tested on an industrially relevant application, i.e. the front-bumper morphing of the DrivAer car model, using the finite-volume method for the full-order resolution of the Reynolds-Averaged Navier–Stokes equations.  相似文献   

7.
The dynamics of a gyrostat in a gravitational field is a fundamental problem in celestial mechanics and space engineering. This paper investigates this problem in the framework of geometric mechanics. Based on the natural symplectic structure, non-canonical Hamiltonian structures of this problem are derived in different sets of coordinates of the phase space. These different coordinates are suitable for different applications. Corresponding Poisson tensors and Casimir functions, which govern the phase flow and phase space structures of the system, are obtained in a differential geometric method. Equations of motion, as well as expressions of the force and torque, are derived in terms of potential derivatives. We uncover the underlying Lie group framework of the problem, and we also provide a systemic approach for equations of motion. By assuming that the gravitational field is axis-symmetrical and central, SO(2) and SO(3) symmetries are introduced into the general problem respectively. Using these symmetries, we carry out two reduction processes and work out the Poisson tensors of the reduced systems. Our results in the central gravitational filed are in consistent with previous results. By these reductions, we show how the symmetry of the problem affects the phase space structures. The tools of geometric mechanics used here provide an access to several powerful techniques, such as the determination of relative equilibria on the reduced system, the energy-Casimir method for determining the stability of equilibria, the variational integrators for greater accuracy in the numerical simulation and the geometric control theory for control problems.  相似文献   

8.
Nonlinear Dynamics - This paper presents a methodology to solve the problem of robustification of Interconnection and Damping Assignment-Passivity Based Control (IDA-PBC) scheme for the case of...  相似文献   

9.
Axås  Joar  Cenedese  Mattia  Haller  George 《Nonlinear dynamics》2023,111(9):7941-7957

We present a fast method for nonlinear data-driven model reduction of dynamical systems onto their slowest nonresonant spectral submanifolds (SSMs). While the recently proposed reduced-order modeling method SSMLearn uses implicit optimization to fit a spectral submanifold to data and reduce the dynamics to a normal form, here, we reformulate these tasks as explicit problems under certain simplifying assumptions. In addition, we provide a novel method for timelag selection when delay-embedding signals from multimodal systems. We show that our alternative approach to data-driven SSM construction yields accurate and sparse rigorous models for essentially nonlinear (or non-linearizable) dynamics on both numerical and experimental datasets. Aside from a major reduction in complexity, our new method allows an increase in the training data dimensionality by several orders of magnitude. This promises to extend data-driven, SSM-based modeling to problems with hundreds of thousands of degrees of freedom.

  相似文献   

10.
The most common state of surface soil is unsaturated. Changes in water content will substantially impact its strength, leading to geological and engineering catastrophes. This paper used LIGGGHTS software to simulate the water bridge effect of unsaturated granular materials with constant water content and verify the rationality of the simplification of the stress-force-fabric (SFF) relationship. The results showed that the capillary force was not isotropic, which was different from the previous study, thus it cannot be overlooked in the simplification of the SFF relationship. Moreover, the influence of water content on the macroscopic mechanical behavior of unsaturated granular materials was interpreted through the evolutions of coordination number, interparticle force, fabric and force anisotropy, and other microscopic parameters. Compared to the literature, we found that different water bridge models would not change the characteristics of the solid skeleton.  相似文献   

11.
ABSTRACT

In this work, we present a localised form of the dynamic eddy viscosity model for computationally efficient and accurate simulation of the turbulent flows governed by Euler equations. In our framework, we determine the dynamic model coefficient locally using the information from neighbouring grid points through a test filtering process. We then develop an optimised Gaussian filtering kernel, using a consistent definition with respect to the test filtering ratio, which gives full attenuation at the grid cut-off wave number. A systematic a-posteriori analysis of our model is performed by solving two 3D test problems: (i) incompressible Taylor–Green vortex flow and (ii) compressible shear layer turbulence induced by Kelvin–Helmholtz instability to show the wide range of applicability of the proposed localised dynamic model. We demonstrate that the proposed dynamic model is robust and provides a better estimation of the inertial range turbulence dynamics than other numerical models tested in this study.  相似文献   

12.
Li  Shanglin  Chen  Yangzhou  Liu  Peter Xiaoping 《Nonlinear dynamics》2023,111(9):8293-8311

This paper considers the problem of leader-following consensus and fault detection for a class of multi-agent systems with Lipschitz nonlinear dynamics. To reduce the amount of redundant information and avoid checking triggering conditions continually, this paper proposes an efficient network framework with a double periodic event-triggered mechanism. Based on the proposed framework, an improved fault detection observer and a consensus controller are designed. Then, the original problem is converted into a set of stability problems with constraints. According to Lyapunov–Krasovskii theorem and the free-weighting matrix technique, sufficient conditions for solving these stability problems are derived in the form of bilinear matrix inequalities (BMIs). Further, to eliminate the nonlinear terms of BMI and obtain optimal performance, two iterative algorithms based on linear matrix inequalities (LMIs) are developed. Two simulation examples are provided to verify the practicality and validity of the theoretical results.

  相似文献   

13.
An  Zhipeng  Wu  Huibin  Shi  Donghua 《Meccanica》2019,54(15):2521-2537
Meccanica - In this paper, we develop a framework of time optimization path planning for robotic manipulators surrounded by static obstacles. Our approach is based on the recursive dynamics method...  相似文献   

14.
Guo  Tieding  Kang  Houjun  Wang  Lianhua  Zhao  Yueyu 《Nonlinear dynamics》2017,90(3):1941-1963

An elastic cables–rigid body coupled model is proposed for investigating dynamic interactions between cables’ nonlinear transversal vibrations and boundary tower’s torsional dynamics, arising in large transmission line–tower systems and suspended cable–bridge tower systems. By introducing a weak torsion assumption and a large moment of inertia for the tower, an asymptotic expansion of cables–tower coupled dynamics is conducted in a weakly nonlinear framework, and a cables–tower reduced coupled model is eventually established. After model’s validations using direct numerical simulations, two distinct kinds of coupled dynamics are fully investigated. The first is that an external torque is applied to the tower and the two cables would both be indirectly excited, asymmetrically, by the torsional/oscillating tower. The two cables’ responses are the same in this case. The second is that only one of the two cables, i.e., the leader cable, is directly excited, and the other cable, i.e., the follower one, is only indirectly excited through cables–tower dynamic interactions. In such kind of leader–follower dynamics, the leader cable is quite different from the follower one. Nonlinear coupled frequency response diagrams for both systems are constructed using numerical continuation algorithms, mainly focused on the coupled steady solutions’ stabilities and bifurcations. Furthermore, the dynamic effects of tower’s moment of inertia, wing span and damping are thoroughly investigated.

  相似文献   

15.

A family of mem-models, including the mem-dashpots, mem-springs, and most recently, mem-inerters, is emerging as a new and powerful way of capturing complex nonlinear behaviors of materials and systems under various types of dynamic loads involving different frequency, amplitude, and loading histories (e.g., hysteresis). Under the framework of nonlinear state-space representation and hybrid dynamical systems, mem-springs may be formulated to effectively represent an inherent degradation of material state. It is shown in this study, for the first time, how the absement (time integral of strain/displacement), a signature state variable for a mem-spring, can be connected with the damage variable, a key quantity in continuum damage mechanics. The generalized momentum (time integral of stress), on the other hand, is shown to be efficient in modeling strain ratcheting via the concept of mem-dashpot. It is also shown in this study, for the first time, how two formulations of the memcapacitive system models (for mem-springs) are special cases of the Preisach model.

  相似文献   

16.
In the current practice of wagon dynamics simulation, traction and braking forces are seldom considered although such forces modify the wheel-rail contact parameters and hence the wheelset dynamics. On the other hand, whilst the traction and braking forces are considered in the simulation of train and locomotive systems, their lateral dynamics is predominantly disregarded. Therefore, there exists a gap in the knowledge of the effect of the application of the longitudinal forces to the lateral dynamics of wagons; this paper aims at bridging this gap. An inertia reference frame method available in the literature has been extended for the purpose. This paper reports the formulation and presents numerical examples of a single wheelset contained within a bogie frame subjected to longitudinal forces of varying severity. The results have been validated where possible.  相似文献   

17.
Abstract

In the kinematic theory of structures consisting of perfectly plastic elements, an inequality between the plastic dissipation work and the load work is used. This inequality, which we will term “the kinematic inequality,” must hold for all kinematically admissible mechanisms. These mechanisms are generated by certain parameters which usually remain in the kinematic inequality and which thereby preclude the general application of the kinematic approach. In this paper we overcome this difficulty in the case of frames and provide various applications of the method. By using new theorems we eliminate the parameters and reduce the kinematic inequality to a finite system of inequalities which depend only on frame geometry and on loads. Based on these theorems, a procedure is offered for deriving a system of independent inequalities for general multistory multibay frames. New theorems are then obtained regarding the existence and the rotation of certain plastic hinges in collapse mechanisms. The overall theory is illustrated by a specific example. Finally, the formulations obtained following our method are used to minimize the mass of a fixed-base rectangular portal frame for any length, height, and system of loads.  相似文献   

18.
19.
 近几年来,笔者提出与发展了随机激励的耗散的哈密顿系统理 论,包括精确平稳解、等效非线性系统法、拟哈密顿系统随机平均法、 拟哈密顿系统的随机稳定性与随机分岔、首次穿越损坏分析方法及非 线性随机最优控制策略,从而构成了一个非线性随机动力学与控制的 哈密顿理论框架.本文简要介绍这一理论框架.  相似文献   

20.
Das  Subhashis  Mahato  Sanat Kumar  Mondal  Argha  Kaslik  Eva 《Nonlinear dynamics》2023,111(9):8821-8836

To explore the impact of pest-control strategy on integrated pest management, a three-dimensional (3D) fractional- order slow–fast prey–predator model is introduced in this article. The prey community (assumed as pest) represents fast dynamics and two predators exhibit slow dynamical variables in the three-species interacting prey–predator model. In addition, common enemies of that pest are assumed as predators of two different species. Pest community causes serious damage to the economy. Fractional-order systems can better describe the real scenarios than classical-order dynamical systems, as they show previous history-dependent properties. We establish the ability of a fractional-order model with Caputo’s fractional derivative to capture the dynamics of this prey–predator system and analyze its qualitative properties. To investigate the importance of fractional-order dynamics on the behavior of the pest, we perform the local stability analysis of possible equilibrium points, using certain assumptions for different sets of parameters and reveal that the fractional-order exponent has an impact on the stability and the existence of Hopf bifurcations in the prey–predator model. Next, we discuss the existence, uniqueness and boundedness of the fractional-order system. We also observe diverse oscillatory behavior of different amplitude modulations including mixed mode oscillations (MMOs) for the fractional-order prey–predator model. Higher amplitude pest periods are interspersed with the outbreaks of small pest concentration. With the decrease of fractional-order exponent, small pest concentration increases with decaying long pest periods. We further notice that the reduced-order model is biologically significant and sensitive to the fractional-order exponent. Additionally, the dynamics captures adaptation that occurs over multiple timescales and we find consistent differences in the characteristics of the model for various fractional exponents.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号