首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The partial catalytic oxidation of methane to synthesis gas over Rh/ZrO2 was investigated experimentally and numerically at fuel-to-air equivalence ratios of 2.5 and 4.0 and pressures of 4 and 6 bar. Experiments were performed in an optically accessible, laboratory-scale, channel-flow catalytic reactor and involved in situ one-dimensional Raman measurements of major species (CH4, O2, H2O, CO2, H2, CO, and N2) concentrations across the reactor boundary layer. The numerical model included a two-dimensional elliptic code with elementary homogeneous (gaseous) and heterogeneous (catalytic) chemical reaction schemes. Homogeneous ignition experiments and numerical predictions have validated the employed gas-phase reaction mechanism and have further delineated the reactor extent over which the contribution of the homogeneous reaction pathway was negligible. Over the reactor extent where oxygen was still available, the employed heterogeneous reaction scheme provided good agreement with the measured species concentrations, overpredicting only to a small degree the partial over the total oxidation route. In the oxygen-depleted zones of the reactor, however, the heterogeneous scheme overpredicted to a greater degree the impact of steam reforming and water gas shift reactions, resulting in higher computed hydrogen yields at the reactor exit. Additional experiments and predictions were carried out in a sub-scale gas-turbine honeycomb reactor, at operating conditions leading to oxygen breakthrough. The predictions again favored the partial over the total oxidation route. A modified heterogeneous scheme was proposed that provided very good agreement with measurements in the honeycomb reactor and in the oxygen-rich zones of the laboratory-scale reactor. The hydrogen produced during partial oxidation was partly re-adsorbed on the catalyst leading to superadiabatic surface temperatures, thus exemplifying the importance of proper thermal management in commercial reactors.  相似文献   

2.
To extend the temperature for propane ignition to a lower region (< 680 K), ozone (O3) was used as an ignition promoter to investigate the low-temperature chemistry of propane. Ignition delay times for propane containing varying concentrations of O3 (0, 100, and 1000 ppm) were measured at 25 bar, 654–882 K, and equivalence ratios of 0.5 and 1.0 in a rapid compression machine (RCM). Species profiles during propane ignition with varying O3 concentrations were recorded using a fast sampling system combined with a gas chromatograph (GC). A kinetic model for propane ignition with O3 was developed. O3 shortened ignition delay times of propane significantly, and the NTC behavior was weakened. O atoms released from O3 reacted with propane through hydrogen abstraction reactions, which led to the fast production of OH radicals. The following oxidation of fuel radicals generated additional OH radicals. Consequently, the inhibition caused by the slow chemistry of hydrogen peroxide (H2O2) in the NTC region was weakened in the presence of O3. Experimental results with O3 addition can provide extra constraints on the low-temperature chemistry of propane. Species profiles during propane ignition at 730 K with 1000 ppm O3 addition showed the production of propanal (C2H5CHO), acetone (CH3COCH3), and acetaldehyde (CH3CHO) was promoted significantly. Model analyses indicated that O3 shifted the oxidation temperature of propane to a lower region, in which reactions of ROO radicals (NC3H7O2 and IC3H7O2) tend to generate RO radicals (NC3H7O and IC3H7O). The promotion of RO radicals led to the fast production of C2H5CHO, CH3COCH3, and CH3CHO. The corresponding species profile highlighted the reaction relevant to ROO and RO radicals (NC3H7O + O2 = C2H5CHO + HO2 and 2 IC3H7O2 = 2 IC3H7O + O2). Rate constants of these reactions were updated, which can potentially improve the performance of the core mechanism under lower temperatures and provide references for model development of larger hydrocarbons.  相似文献   

3.
Though the combustion chemistry of dimethyl ether (DME) has been widely investigated over the past decades, there remains a dearth of ignition data that examines the low-temperature, low-pressure chemistry of DME. In this study, DME/‘air’ mixtures at various equivalence ratios from lean (0.5) to extremely rich (5.0) were ignited behind reflected shock waves at a fixed pressure (3.0 atm) over the temperature range 625–1200 K. The ignition behavior is different from that at high-pressures, with a repeatable ignition delay time fall-off feature observed experimentally in the temperature transition zone from the negative temperature coefficient (NTC) regime to the high-temperature regime. This could not be reproduced using available kinetic mechanisms as conventionally homogeneous ignition simulations. The fall-off behavior shows strong equivalence ratio dependence and disappears completely at an equivalence ratio of 5.0. A local ignition kernel postulate was implemented numerically to quantifiably examine the inhomogeneous premature ignition. At low temperature, no pre-ignition occurs in the mixture. A conspicuous discrepancy was observed between the measurements and constrained UV simulations at temperatures beyond the NTC regime. A third O2 addition reaction sub-set was incorporated into AramcoMech 3.0, together with related species thermochemistry calculated using the G3/G4/CBS-APNO compound method, to explore the low-temperature deviation. The new reaction class does not influence the model predictions in IDTs, but the updated thermochemistry does. Sensitivity analyses indicate that the decomposition of hydroperoxy-methylformate plays a critical role in improving the low-temperature oxidation mechanism of DME but unfortunately, the thermal rate coefficient has never been previously investigated. Further experimental and theoretical endeavors are required to attain holistic quantitative chemical kinetics based on our understanding of the low-temperature chemistry of DME.  相似文献   

4.
Methanol (CH3OH) has attracted considerable attention as a renewable fuel or fuel additive with low greenhouse gas emissions. Methanol oxidation was studied using a recently developed supercritical pressure jet-stirred reactor (SP-JSR) at pressures of 10 and 100 atm, at temperatures from 550 to 950 K, and at equivalence ratios of 0.1, 1.0, and 9.0 in experiments and simulations. The experimental results show that the onset temperature of CH3OH oxidation at 100 atm is around 700 K, which is more than 100 K lower than the onset at 10 atm and this trend cannot be predicted by the existing kinetics models. Furthermore, a negative temperature coefficient (NTC) behavior was clearly observed at 100 atm at fuel rich conditions for methanol for the first time. To understand the observed temperature shift in the reactivity and the NTC effect, we updated some key elementary reaction rates of relevance to high pressure CH3OH oxidation from the literature and added some new low-temperature reaction pathways such as CH2O + HO2 = HOCH2O2 (RO2), RO2 + RO2 = HOCH2O (RO) + HOCH2O (RO) + O2, and CH3OH + RO2 = CH2OH + HOCH2O2H (ROOH). Although the model with these updates improves the prediction somewhat for the experimental data at 100 atm and reproduces well high-temperature ignition delay times and laminar flame speed data in the literature, discrepancies still exist for some aspects of the 100 atm low-temperature oxidation data. In addition, it was found that the pressure-dependent HO2 chemistry shifts to lower temperature as the pressure increases such that the NTC effect at fuel-lean conditions is suppressed. Therefore, as shown in the experiments, the NTC phenomenon was only observed at the fuel-rich condition where fuel radicals are abundant and the HO2 chemistry at high pressure is weakened by the lack of oxygen resulting in comparatively little HO2 formation.  相似文献   

5.
The homogeneous ignition of CH4/air, CH4/O2/H2O/N2, and CH4/O2/CO2/N2 mixtures over platinum was investigated experimentally and numerically at pressures 4 bar p 16 bar, temperatures 1120 K T 1420 K, and fuel-to-oxygen equivalence ratios 0.30 0.40. Experiments have been performed in an optically accessible catalytic channel-flow reactor and included planar laser induced fluorescence (LIF) of the OH radical for the determination of homogeneous (gas-phase) ignition and one-dimensional Raman measurements of major species concentrations across the reactor boundary layer for the assessment of the heterogeneous (catalytic) processes preceding homogeneous ignition. Numerical predictions were carried out with a 2D elliptic CFD code that included elementary heterogeneous and homogeneous chemical reaction schemes and detailed transport. The employed heterogeneous reaction scheme accurately captured the catalytic methane conversion upstream of the gaseous combustion zone. Two well-known gas-phase reaction mechanisms were tested for their capacity to reproduce measured homogeneous ignition characteristics. There were substantial differences in the performance of the two schemes, which were ascribed to their ability to correctly capture the pT parameter range of the self-inhibited ignition behavior of methane. Comparisons between measured and predicted homogeneous ignition distances have led to the validation of a gaseous reaction scheme at 6 bar p 16 bar, a pressure range of particular interest to gas-turbine catalytically stabilized combustion (CST) applications. The presence of heterogeneously produced water chemically promoted the onset of homogeneous ignition. Experiments and predictions with CH4/O2/H2O/N2 mixtures containing 57% per volume H2O have shown that the validated gaseous scheme was able to capture the chemical impact of water in the induction zone. Experiments with CO2 addition (30% per volume) were in good agreement with the numerical simulations and have indicated that CO2 had only a minor chemical impact on homogeneous ignition.  相似文献   

6.
A detailed chemical kinetic model for oxidation of C2H4 in the intermediate temperature range and high pressure has been developed and validated experimentally. New ab initio calculations and RRKM analysis of the important C2H3 + O2 reaction was used to obtain rate coefficients over a wide range of conditions (0.003-100 bar, 200-3000 K). The results indicate that at 60 bar and medium temperatures vinyl peroxide, rather than CH2O and HCO, is the dominant product. The experiments, involving C2H4/O2 mixtures diluted in N2, were carried out in a high pressure flow reactor at 600-900 K and 60 bar, varying the reaction stoichiometry from very lean to fuel-rich conditions. Model predictions are generally satisfactory. The governing reaction mechanisms are outlined based on calculations with the kinetic model. Under the investigated conditions the oxidation pathways for C2H4 are more complex than those prevailing at higher temperatures and lower pressures. The major differences are the importance of the hydroxyethyl (CH2CH2OH) and 2-hydroperoxyethyl (CH2CH2OOH) radicals, formed from addition of OH and HO2 to C2H4, and vinyl peroxide, formed from C2H3 + O2. Hydroxyethyl is oxidized through the peroxide HOCH2CH2OO (lean conditions) or through ethenol (low O2 concentration), while 2-hydroperoxyethyl is converted through oxirane.  相似文献   

7.
An experimental and kinetic modeling study of the autoignition of 3-methylheptane, a compound representative of the high molecular weight lightly branched alkanes found in large quantities in conventional and synthetic aviation kerosene and diesel fuels, is reported. Shock tube and rapid compression machine ignition delay time measurements are reported over a wide range of conditions of relevance to combustion engine applications: temperatures from 678 to 1356 K; pressures of 6.5, 10, 20, and 50 atm; and equivalence ratios of 0.5, 1.0, and 2.0. The wide range of temperatures examined provides observation of autoignition in three reactivity regimes, including the negative temperature coefficient (NTC) regime characteristic of paraffinic fuels. Comparisons made between the current ignition delay measurements for 3-methylheptane and previous results for n-octane and 2-methylheptane quantifies the influence of a single methyl substitution and its location on the reactivity of alkanes. It is found that the three C8 alkane isomers have indistinguishable high-temperature ignition delay but their ignition delay times deviate in the NTC and low-temperature regimes in correlation with their research octane numbers. The experimental results are compared with the predictions of a proposed kinetic model that includes both high- and low-temperature oxidation chemistry. The model mechanistically explains the differences in reactivity for n-octane, 2-methylheptane, and 3-methylheptane in the NTC through the influence of the methyl substitution on the rates of isomerization reactions in the low-temperature chain branching pathway, that ultimately leads to ketohydroperoxide species, and the competition between low-temperature chain branching and the formation of cyclic ethers, in a chain propagating pathway.  相似文献   

8.
A novel supercritical-pressure jet stirred reactor (SP-JSR) is developed to operate up to 200 atm. The SP-JSR provides a unique platform to conduct kinetic studies at low and intermediate temperatures at extreme pressures under uniform temperature distribution and a short flow residence time. n-Butane oxidations with varying levels of CO2 dilutions at pressures of 10 and 100 atm and over a temperature range of 500-900 K were conducted using the SP-JSR. The experiment showed that at 100 atm, a weak NTC behavior is observed and the intermediate temperature oxidation is shifted to lower temperatures. Furthermore, the results showed that CO2 addition at supercritical conditions slows down the fuel oxidation at intermediate temperature while has little effect on the low temperature oxidation. The Healy model under-predicts the NTC behavior and shows little sensitivity of the effect of CO2 addition on the n-butane oxidation. Reaction pathway and sensitivity analyses exhibit that both the low and intermediate temperature chemistries are controlled by RO2 consumption pathways. In addition, the reactions of CH3CO (+ M) and CH3CO + O2 become important at 100 atm. The results also revealed that fuel oxidation kinetics is insensitive to the third body effect of CO2. The kinetic effect of supercritical CO2 addition may come from the reactions involving H2O2, CO, CH2O, and CH3CHO, especially for the reactions of CO2 + H and CO2 + OH.  相似文献   

9.
Oxidation of acetonitrile has been studied in a flow reactor in the absence and presence of nitric oxide. The experiments were conducted at atmospheric pressure in the temperature range 1150–1450 K, varying the excess air ratio from slightly fuel-lean to very lean. Oxidation of CH3CN was slow below 1300 K. Nitric oxide, hydrogen cyanide and nitrous oxide were detected as important products. A detailed chemical kinetic model for oxidation of acetonitrile was developed, based on a critical evaluation of data from literature. The rate coefficients for the reactions of CH3CN and CH2CN with O2 were calculated from ab initio theory. Modeling predictions were in satisfactory agreement with experiments. Calculations were sensitive to thermal dissociation of CH3CN and to the branching fraction for CH3CN + OH to CH2CN + H2O and HOCN + CH3, respectively. More work is desirable for these steps, as well as for reactions of CH2CN and HCCN.  相似文献   

10.
We studied the oxidation of neo-pentane by combining experiments, theoretical calculations, and mechanistic developments to elucidate the impact of the 3rd O2 addition reaction network on ignition delay time predictions. The experiments are based on photoionization mass spectrometry in jet-stirred and time-resolved flow reactors allowing for sensitive detection of the keto-hydroperoxide (KHP) and keto-dihydroperoxide (KDHP) intermediates. With neo-pentane exhibiting a unique symmetric molecular structure, which consequently results only in single KHP and KDHP isomers, theoretical calculations of ionization and fragment appearance energies and of absolute photoionization cross sections enabled the unambiguous identification and quantification of the KHP intermediate. Its temperature and time-resolved profiles together with calculated and experimentally observed KHP-to-KDHP signal ratios were compared to simulation results based on a newly developed mechanism that describes the 3rd O2 addition reaction network. A satisfactory agreement has been observed between the experimental data points and the simulation results, thus adding confidence to the model's overall performance. Finally, this mechanism was used to predict ignition delay times reported previously in shock tube and rapid compression machine experiments (J. Bugler et al., Combust. Flame 163 (2016) 138–156). While the model accurately reproduces the experimental data, simulations with and without the 3rd O2 addition reaction network included reveal only a negligible effect on the predicted ignition delay times at 10 and 20 atm. According to model calculations, low temperatures and high pressures promote the importance of the 3rd O2 addition reactions.  相似文献   

11.
12.
Ignition delay times and OH concentration time-histories were measured in DME/O2/Ar mixtures behind reflected shock waves. Initial reflected shock conditions covered temperatures (T5) from 1175 to 1900 K, pressures (P5) from 1.6 to 6.6 bar, and equivalence ratios (?) from 0.5 to 3.0. Ignition delay times were measured by collecting OH emission near 307 nm, while OH time-histories were measured using laser absorption of the R1(5) line of the A-X(0,0) transition at 306.7 nm. The ignition delay times extended the available experimental database of DME to a greater range of equivalence ratios and pressures. Measured ignition delay times were compared to simulations based on DME oxidation mechanisms by Fischer et al. [7] and Zhao et al. [9]. Both mechanisms predict the magnitude of ignition delay times well. OH time-histories were also compared to simulations based on both mechanisms. Despite predicting ignition delay times well, neither mechanism agrees with the measured OH time-histories. OH Sensitivity analysis was applied and the reactions DME ↔ CH3O + CH3 and H + O2 ↔ OH + O were found to be most important. Previous measurements of DME ↔ CH3O + CH3 are not available above 1220 K, so the rate was directly measured in this work using the OH diagnostic. The rate expression k[1/s] =  1.61 × 1079T−18.4 exp(−58600/T), valid at pressures near 1.5 bar, was inferred based on previous pyrolysis measurements and the current study. This rate accurately describes a broad range of experimental work at temperatures from 680 to 1750 K, but is most accurate near the temperature range of the study, 1350-1750 K. When this rate is used in both the Fischer et al. and Zhao et al. mechanisms, agreement between measured OH and the model predictions is significantly improved at all temperatures.  相似文献   

13.
Larger ethers such as diethyl ether (DEE) and di-n-propyl ether (DPE) have different oxidation behavior (double-NTC behavior) compared to the simplest dimethyl ether (DME). Such phenomena are interpreted with different reactions and processes in different ether kinetic models, which also predict different formation pathways of oxidation intermediates such as acids. To gain further insights into the oxidation kinetics of linear ethers, ethyl methyl ether (EME), which has a nonsymmetrical structure, was studied in this work. Oxidation experiments of 1% of EME were performed in a jet-stirred reactor at 1 atm, a residence time of 2 s, an equivalence ratio of 1, and over a temperature range of 375–850 K. The intermediates were analyzed with photoionization molecular-beam mass spectrometry. To explain the oxidation behavior of EME, a detailed kinetic model was also constructed. The oxidation of EME spans a wider temperature range than DME, but no obvious double-NTC behavior was observed as DEE. Based on the model analysis and profiles of critical intermediates such as ketohydroperoxides (KHPs) and CH3O2H, the low-temperature oxidation behavior of EME was explained by the chain-branching reactions of the fuel itself and the oxidation intermediates. Abundant species such as aldehydes, acids, esters, and fuel-specific dione species were detected and could be well reproduced by the current model. In particular, acids are produced by the decomposition of KHPs and subsequent reactions of the intermediate CH3CHO. Esters and dione species are mainly formed via fuel-related pathways.  相似文献   

14.
To improve our understanding of the combustion characteristics of propyne, new experimental data for ignition delay times (IDTs), pyrolysis speciation profiles and flame speed measurements are presented in this study. IDTs for propyne ignition were obtained at equivalence ratios of 0.5, 1.0, and 2.0 in ‘air’ at pressures of 10 and 30 bar, over a wide range of temperatures (690–1460 K) using a rapid compression machine and a high-pressure shock tube. Moreover, experiments were performed in a single-pulse shock tube to study propyne pyrolysis at 2 bar pressure and in the temperature range 1000–1600 K. In addition, laminar flame speeds of propyne were studied at an unburned gas temperature of 373 K and at 1 and 2 bar for a range of equivalence ratios. A detailed chemical kinetic model is provided to describe the pyrolytic and combustion characteristics of propyne across this wide-ranging set of experimental data. This new mechanism shows significant improvements in the predictions for the IDTs, fuel pyrolysis and flame speeds for propyne compared to AramcoMech3.0. The improvement in fuel reactivity predictions in the new mechanism is due to the inclusion of the propyne + H?2 reaction system along with ?H radical addition to the triple bonds of propyne and subsequent reactions.  相似文献   

15.
Methyl radical concentration time-histories were measured during the oxidation and pyrolysis of iso-octane and n-heptane behind reflected shock waves. Initial reflected shock conditions covered temperatures of 1100-1560 K, pressures of 1.6-2.0 atm and initial fuel concentrations of 100-500 ppm. Methyl radicals were detected using cw UV laser absorption near 216 nm; three wavelengths were used to compensate for time- and wavelength-dependent interference absorption. Methyl time-histories were compared to the predictions of several current oxidation models. While some agreement was found between modeling and measurement in the early rise, peak and plateau values of methyl, and in the ignition time, none of the current mechanisms accurately recover all of these features. Sensitivity analysis of the ignition times for both iso-octane and n-heptane showed a strong dependence on the reaction C3H5 + H = C3H4 + H2, and a recommended rate was found for this reaction. Sensitivity analysis of the initial rate of CH3 production during pyrolysis indicated that for both iso-octane and n-heptane, reaction rates for the initial decomposition channels are well isolated, and overall values for these rates were obtained. The present concentration time-history data provide strong constraints on the reaction mechanisms of both iso-octane and n-heptane oxidation, and in conjunction with OH concentration time-histories and ignition delay times, recently measured in our laboratory, should provide a self-consistent set of kinetic targets for the validation and refinement of iso-octane and n-heptane reaction mechanisms.  相似文献   

16.
The ignition (light-off) temperatures of catalytic oxidation reactions provide very useful information for understanding their surface reaction mechanism. In this study, the ignition behavior of the oxidation of hydrogen (H2), carbon monoxide (CO), methane (CH4), ethane (C2H6), and propane (C3H8) over Rh/alumina catalysts is examined in a stagnation-point flow reactor. The light-off temperatures are identified by means of the sudden increase of the catalyst temperature when linearly heating the catalyst for various fuel/oxygen ratios. For hydrogen and all hydrocarbons studied, the results show a rise of ignition temperature with increasing fuel/oxygen ratio, whereas the opposite trend is observed for the light-off of CO oxidation. Hydrogen oxidation, however, shows an opposite trend compared to previous investigations, performed on platinum [1], [2].  相似文献   

17.
本文利用程序升温脱附技术(TPD)研究了乙醛吸附在锐钛矿型TiO2(001)-(1×4)表面的化学性质. 实验结果表明完整晶格位点对乙醛反应表现极为惰性,而表面上的还原型缺陷位点在热驱动下可有效地使乙醛分子通过碳-碳偶联反应生成2-丁酮和丁烯. 提出了乙醛在锐钛矿型TiO2(001)-(1×4)表面偶联反应主要是通过表面还原型缺陷位吸附成对的乙醛分子,因为表面已有的钛原子对还原型缺陷为乙醛分子提供了合适的吸附位点.  相似文献   

18.
An experimental investigation of the oxidation of hydrogen diluted by nitrogen in presence of CO2 was performed in a fused silica jet-stirred reactor (JSR) over the temperature range 800-1050 K, from fuel-lean to fuel-rich conditions and at atmospheric pressure. The mean residence time was kept constant in the experiments: 120 ms at 1 atm and 250 ms at 10 atm. The effect of variable initial concentrations of hydrogen on the combustion of methane and methane/carbon dioxide mixtures diluted by nitrogen was also experimentally studied. Concentration profiles for O2, H2, H2O, CO, CO2, CH2O, CH4, C2H6, C2H4, and C2H2 were measured by sonic probe sampling followed by chemical analyses (FT-IR, gas chromatography). A detailed chemical kinetic modeling of the present experiments and of the literature data (flame speed and ignition delays) was performed using a recently proposed kinetic scheme showing good agreement between the data and this modeling, and providing further validation of the kinetic model (128 species and 924 reversible reactions). Sensitivity and reaction paths analyses were used to delineate the important reactions influencing the kinetic of oxidation of the fuels in absence and in presence of additives (CO2 and H2). The kinetic reaction scheme proposed helps understanding the inhibiting effect of CO2 on the oxidation of hydrogen and methane and should be useful for gas turbine modeling.  相似文献   

19.
Few studies on the low-temperature combustion behavior of MIPK, being a promising fuel additive, have been conducted. In this work, ignition delay times (IDTs) of MIPK were measured in the temperatures ranging between 780–910 K and pressures of 20 and 25 bar using a rapid compression machine (RCM). Oxy-fuel combustion combined with biofuel could remove CO2 from the atmosphere. The IDTs of MIPK were measured in the temperatures ranging between 1125–1600 K under the O2/CO2 atmosphere at the pressures of 1 and 10 bar using a shock tube. A low to high-temperature MIPK kinetic model (HUST-MIPK model) was proposed, in which the low-temperature sub-model consists of 19 low-temperature reaction classes and was constructed by analogy-based method, the high-temperature sub-model was adapted from the works of Cheng et al.. The predictions of HUST-MIPK model are in good agreement with the present low-temperature IDTs, high-temperature O2/CO2 atmosphere IDTs, and the literature experimental data. The negative temperature coefficient (NTC) behavior was not observed in the temperature range from 790 to 910 K in the present RCM experiments, but was observed for methyl propyl ketone (MPK) and diethyl ketone (DEK) under similar conditions. The low-temperature chemistry of three pentanone isomers (MIPK, MPK, and DEK) was compared using the flux and sensitivity analysis. The comparison of the experimental high-temperature IDTs between O2/CO2 and O2/Ar atmospheres indicates the IDTs of MIPK under O2/CO2 atmosphere are longer than those under O2/Ar atmosphere at 1 bar, and the effects of CO2 are almost independent of the pressure. The physical and chemical effects of CO2 on the ignition were studied in detail.  相似文献   

20.
H2O2 is one of the most important species in dimethyl ether (DME) oxidation, acting not only as a marker for low temperature kinetic activity but also responsible for the “hot ignition” transition. This study reports, for the first time, direct measurements of H2O2 and CH3OCHO, among other intermediate species concentrations in helium-diluted DME oxidation in an atmospheric pressure flow reactor from 490 to 750 K, using molecular beam electron-ionization mass spectrometry (MBMS). H2O2 measurements were directly calibrated, while a number of other species were quantified by both MBMS and micro gas chromatography to achieve cross-validation of the measurements. Experimental results were compared to two different DME kinetic models with an updated rate coefficient for the H + DME reaction, under both zero-dimensional and two-dimensional physical model assumptions. The results confirm that low and intermediate temperature DME oxidation produces significant amounts of H2O2. Peroxide, as well as O2, DME, CO, and CH3OCHO profiles are reasonably well predicted, though profile predictions for H2/CO2 and CH2O are poor above and below ~625 K, respectively. The effect of the collisional efficiencies for the H + O2 + M = HO2 + M reaction on DME oxidation was investigated by replacing 20% He with 20% CO2. Observed changes in measured H2O2 concentrations agree well with model predictions. The new experimental characterizations of important intermediate species including H2O2, CH2O and CH3OCHO, and a path flux analysis of the oxidation pathways of DME support that kinetic parameters for decomposition reactions of HOCH2OCO and HCOOH directly to CO2 may be responsible for model under-prediction of CO2. The H abstraction reactions for DME and/or CH2O and the unimolecular decomposition of HOCH2O merit further scrutiny towards improving the prediction of H2 formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号