首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effects of fuel jet penetration height on supersonic combustion behaviors were investigated experimentally in a supersonic combustion ramjet model combustor at a Mach speed of 2 and at a stagnation temperature of 1900 K. The jet-to-crossflow momentum flux ratio was varied to control the fuel-jet penetration height, using several injectors with different orifice diameters: 2, 3, and 4 mm. First, transverse nitrogen jets were observed to identify a relationship between the fuel jet penetration height and the momentum flux ratio by focusing Schlieren photography. Then, supersonic combustion behaviors of ethylene were investigated through combustion pressure measurements. Simultaneously, time-resolved images of CH* chemiluminescence and shadowgraphs were recorded with high-speed video cameras. Furthermore, a morphology of supersonic combustion modes was investigated for various equivalence ratios and fuel penetration heights in a two-dimensional latent space trained by the shared Gaussian process latent variable models (SGPLVM), considering CH* chemiluminescence images and the shock parameters. The results indicated that the penetration height of nitrogen jets was a function of the jet momentum flux ratio; this function was expressed by a fitting curve. Five typical combustion modes were identified based on time-resolved CH* chemiluminescence images, shadowgraphs, and pressure profiles. Even for a given equivalence ratio, different combustion modes were observed depending on the fuel penetration height. For an injection diameter of 3 and 4 mm, cavity shear-layer and jet-wake stabilized combustions were observed as the scram modes. On the other hand, although the cavity shear-layer and lifted-shear-layer stabilized combustions were observed, no jet-wake stabilized combustion was observed for an orifice diameter of 2 mm. Fuel penetration heights above the cavity aft wall were expected to affect the combustion behavior. Finally, a morphology of the supersonic combustion modes was clearly shown in the two-dimensional latent space of the SGPVLM.  相似文献   

2.
Combustion characteristics of a laboratory dual-mode ramjet/scramjet combustor were studied experimentally. The combustor consists of a sonic fuel jet injected into a supersonic crossflow upstream of a wall cavity pilot flame. These fundamental components are contained in many dual-mode combustor designs. Experiments were performed with an isolator entrance Mach number of 2.2. Air stagnation temperatures were varied from 1040 to 1490 K, which correspond to flight Mach numbers of 4.3–5.4. Both pure hydrogen and a mixture of hydrogen and ethylene fuels were used. High speed imaging of the flame luminosity was performed along with measurements of the isolator and combustor wall pressures. For ramjet mode operation, two distinct combustion stabilization locations were found for fuel injection a sufficient distance upstream of the cavity. At low T0, the combustion was anchored at the leading edge of the cavity by heat release in the cavity shear layer. At high T0, the combustion was stabilized a short distance downstream of the fuel injection jet in the jet-wake. For an intermediate range of T0, the reaction zone oscillated between the jet-wake and cavity stabilization locations. Wall pressure measurements showed that cavity stabilized combustion was the steadiest, followed by jet-wake stabilized, and the oscillatory case. For fuel injection close to the cavity, a hybrid stabilization mode was found in which the reaction zone locations for the two stabilization modes overlapped. For this hybrid stabilization, cavity fueling rate was an important factor in the steadiness of the flow field. Scramjet mode combustion was found to only exist in the cavity stabilized location for the conditions studied.  相似文献   

3.
Combustion instabilities were investigated experimentally for a hydrogen-rich combustion in a model afterburner installed at the end of a high-enthalpy wind tunnel. Air was supplied at 0.3 MPa and 950 K. The combustion instabilities were studied with the time-resolved measurements of a near-infrared (NIR) emission from water molecules over 780 nm using a high-speed video camera. Pressure was also measured in the combustor. The pressure and the NIR images were analyzed by data-driven approach, which include the fast Fourier transform (FFT), the wavelet transform, the dynamic mode decomposition (DMD) and the Gaussian process latent variable methods (GP-LVM). Thermoacoustic instability was observed under a rich condition, and the amplitude of the pressure oscillation was the maximum at the overall equivalence ratio of approximately 2.4 or 2.7 as a result of the FFT. The combustion dynamics were investigated in detail for an experimental run at the equivalence ratio of 2.4. A pressure spectrogram indicated a flame–vortex interaction with a Strouhal number of 0.5 (2300 Hz), thermoacoustic instability (560 Hz), and their transitions with the wavelet transform. For NIR images, the same tendency was also observed in the spectrogram of the modes obtained by the Gabor-filtered DMD, which could clearly resolve the high-order harmonic modes of the flame–vortex interaction and the thermoacoustic instability. Furthermore, NIR images were analyzed with GP-LVM to study the evolution of the combustion dynamics in a three-dimensional latent space. Recurrence plots with the Euclidean distance function were used to visualize the evolutions of the combustion dynamics. A limit cycle behavior of the flame–vortex interaction was clearly observed, whereas the limit cycle of the thermoacoustic instability showed more complicated behaviors. The transition behaviors of the instabilities were observed in the recurrence plots in detail, indicating that the flame–vortex interaction excited the fourth harmonic mode of the thermoacoustic instability, followed by the basic mode.  相似文献   

4.
高氧气浓度甲烷不稳定燃烧实验研究   总被引:1,自引:0,他引:1  
采用无回火的急速混合管状燃烧技术,以二氧化碳和氧气的混合气体为氧化剂,基于CH~*自发光高速摄影图像及同步声压曲线,分析氧气浓度β=0.67的甲烷富氧燃烧特性。研究发现当量比0.6~1.0之间的火焰结构呈周期性变化,其频率与燃烧室内声压振荡频率一致,均为高频振荡。分析结果表明,燃烧器内的富氧燃烧振荡模式属于轴向声学共振。混合气体当量比由0.6增至1.0,热释率提高,热释率脉动与声压耦合增强,低频声压幅值减小,高频声压幅值增大,低频振动能量向高频振动能量转变,频谱特性由具有两个特征频率的周期性振荡转变为只有一个高频的周期振荡燃烧。  相似文献   

5.
A hybrid RANS/LES study of a cavity-based scramjet was performed and reasonable agreements were found between simulation results and experimental measurements. In the current case, the flame was stabilized by the subsonic cavity shear layer and propagated downstream into the supersonic flow. The vortex dynamic in the flow, mixing, and combustion regions was comparatively investigated. The averaged vorticity in the combustion regions was lower by 55% compared to the mixing region, primarily due to dilatation as a result of the heat release. Furthermore, the combustion zone was decomposed into four regions based on premixed/diffusion flame and subsonic/supersonic combustion. Then the vorticity and its transport in the four regions were compared. The averaged vorticity in the premixed combustion regions was only slightly larger than that in the diffusion combustion regions. However, the averaged heat release rate was nearly 3 times larger in the premixed regions, leading to higher contributions of dilatation and baroclinic torque in the premixed regions, with an overall weak positive impact on the vorticity generation. In the subsonic combustion regions, the vorticity was three times larger than that in the supersonic combustion regions, despite similar heat release rates on average. It could be explained by the relatively large magnitude of dilatation and baroclinic torque in the supersonic flow. Vortex stretching and dilatation were comparable in the supersonic flame but the former became two times larger than the latter in the subsonic flame. Moreover, the baroclinic torque had larger contributions than diffusion in the supersonic flame whereas the opposite trend was found in the subsonic flame. The results highlight that the subsonic combustion regions in the cavity shear layer and near the walls significantly contribute to the vortex dynamics and mixing process, in addition to flame stabilization.  相似文献   

6.
This paper describes an experimental investigation of the feasibility of using “slow” active control approaches, which “instantaneously” change liquid fuel spray properties, to suppress combustion instabilities. The objective of this control approach was to break up the feedback between the combustion process heat release and combustor pressure oscillations that drive the instability by changing the characteristics of the combustion process (e.g., the characteristic combustion time). To demonstrate the feasibility of such control, this study used a proprietary fuel injector (NanomiserTM), which can vary its fuel spray properties, to investigate the dependence of acoustics–combustion process coupling, i.e., the driving of combustion instabilities, upon the fuel spray properties. This study showed that by changing the spray characteristics it is possible to significantly damp combustion instabilities. Furthermore, using combustion zone chemiluminescence distributions, which were obtained by Abel’s deconvolution synchronized with measured acoustic data, it has been shown that the instabilities were mostly driven midway between the combustor centerline and wall, a short distance downstream from the flame holder, where the mean axial flow velocity is approximately zero in the vortex near the flame holder. The results of this study strongly suggest that a “slow” active control system that employs controllable fuel injectors could be effectively used to prevent the onset of detrimental combustion instabilities.  相似文献   

7.
This paper examines the scram/dual-mode combustion limits of hydrocabon fuels within a Mach 8, scramjet combustor. Flight-equivalent flows were delivered to the axisymmetric, cavity combustor via a reflected shock tunnel. Two scramjet fuels were examined: ethylene and a surrogate mixture representing endothermically cracked n-dodecane. Combustion modes were examined via static pressure sensors and through both chemiluminescence imaging, and planar laser induced fluorescence (PLIF) of the OH combustion radical in the combustor exhaust plume. Ethylene-fuelled experiments developed scram-mode combustion under reduced fuelling conditions, experiencing shock wave dominated flowfields. OH PLIF diagnostics indicated such combustion modes developed a ring-like structure of combustion products, primarily axisymmetrically adjacent to the combustor wall. Increased fuelling anchored combustion downstream of the fuel injector, while further increases instigated dual-mode combustion. In this mode, subsonic combustion regions combine with the supersonic coreflow to permit the transfer of information upstream with substantially increased pressure encountered. Optical diagnostics indicate broadly asymmetric, unsteady combustion features. The surrogate mixture representing endothermically cracked n-dodecane experienced rapid onset from no-combustion (optically confirmed) to fully developed dual-mode combustion at critical fuelling rates. OH PLIF signals and chemiluminescence of this fuel were weaker than comparable ethylene cases, indicating potential differences in combustion pathways.  相似文献   

8.
As lean premixed combustion systems are more susceptible to combustion instabilities than non-premixed systems, there is an increasing demand for improved numerical design tools that can predict the occurrence of combustion instabilities with high accuracy. The inherent nonlinearities in combustion instabilities can be of crucial importance, and we here propose an approach in which the one-dimensional (1D) Navier-Stokes and scalar transport equations are solved for geometries of variable cross-section. The focus is on attached flames, and for this purpose a new phenomenological model for the unsteady heat release from a flame front is introduced. In the attached flame method (AFM) the heat release occurs over the full length of the flame. The nonlinear code with the use of the AFM approach is validated against analytical results and against an experimental study of thermoacoustic instabilities in oxy-fuel flames by Ditaranto and Hals [Combustion and Flame 146 (2006) 493-512]. The numerical simulations are in accordance with the experimental measurements and the analytical results and both the frequencies and the amplitudes of the resonant acoustic pressure modes are reproduced with good accuracy.  相似文献   

9.
Flame dynamics under various backpressure conditions were experimentally investigated using direct flame visualization, high-speed CH* chemiluminescence imaging, and wall pressure measurements. The stagnation pressure and temperature used in the present study were 100 kPa and 2500 K, respectively, with a freestream Mach number of 4.5. Rectangular scramjet models with and without a cavity were used to explore the effects of the cavity on flame dynamics when operating in scramjet mode, ramjet mode, and unstart. The flow rate of the ethylene jet was varied to impose backpressures corresponding to each operation mode. For both models, reverse flame propagation was observed for ramjet mode and unstart. For ramjet mode, flame fluctuation occurred within the isolator due to the coupling of fluid dynamics and combustion. The presence of a cavity enhanced combustion and reduced flame fluctuation in both scram and ramjet mode. The cavity promoted unstart because of the greater heat release from combustion. Further research using spatially resolved diagnostic techniques is needed to identify the flame locations for ramjet mode and unstart.  相似文献   

10.
基于各向异性非结构网格生成技术, 开发了面向复杂几何和复杂湍流燃烧问题的自适应求解算法, 并进行了程序代码的可靠性验证工作, 展示了各向异性网格自适应算法在降低问题求解规模、提高火焰面和流场计算精度等方面的优势.应用该自适应求解技术准确捕捉到了一维预混层流火焰、二维对冲火焰和三维本生灯湍流火焰的流场信息, 火焰面附近的温度、速度、组分等物理量与实验值吻合很好.对一款富油-快速混合-贫油(rich-burn, quick-mix, lean-burn, RQL)低排放发动机燃烧室进行了计算分析, 发现了燃烧室内的热声不稳定现象.   相似文献   

11.
The unsteady, reactive Navier-Stokes equations with a detailed chemical mechanism of 11 species and 27 steps were employed to simulate the mixing, flame acceleration and deflagration-to-detonation transition (DDT) triggered by transverse jet obstacles. Results show that multiple transverse jet obstacles ejecting into the chamber can be used to activate DDT. But the occurrence of DDT is tremendously difficult in a non-uniform supersonic mixture so that it required several groups of transverse jets with increasing stagnation pressure. The jets introduce flow turbulence and produce oblique and bow shock waves even in an inhomogeneous supersonic mixture. The DDT is enhanced by multiple explosion points that are generated by the intense shock wave focusing of the leading flame front. It is found that the partial detonation front decouples into shock and flame, which is mainly caused by the fuel deficiency, nevertheless the decoupled shock wave is strong enough to reignite the mixture to detonation conditions. The resulting transverse wave leads to further mixing and burning of the downstream non-equilibrium chemical reaction, resulting in a high combustion temperature and intense flow instabilities. Additionally, the longitudinal and transverse gradients of the non-uniform supersonic mixture induce highly dynamic behaviors with sudden propagation speed increase and detonation front instabilities.  相似文献   

12.
本文研究了圆柱受限空间内的喷雾火焰燃烧压力振荡的特性。为了更清楚地了解火焰的构造,首先测量了火焰的温度场。在较大的一次风和二次风变化范围内,测量了压力的振荡特性。结果表明:火焰的稳定是由回流区完成的,在较小的一次风燃料当量比和中等的二次风量时,振荡最强,达到 100 Pa左右的量级。其频率为 200~230 Hz左右。分析表明燃烧室中的振荡是轴向驻波振荡。  相似文献   

13.
Injection of N2 through micro-jets located on the dump plane of a lean premixed swirl stabilized combustor is investigated as a new method for mitigating combustion instabilities. This study focuses on the chemical and fluid dynamic processes by which the N2 micro-jets impact the flame dynamics. An experimental and numerical investigation is performed to characterize the combustion instability during the V-to-M flame shape transition in a swirl burner fueled with premixed CH4/air, at an equivalence ratio of 0.62. Reasonable agreements have been found between the experimental measurements and simulation results. Both of them present that the flame changes from V-shape to M-shape periodically, and a low-frequency instability around 10 Hz is observed accordingly. It is confirmed that intermittent flame extinction in the outer recirculation zone (ORZ) is the source of the combustion instability. Furthermore, injection of N2 through micro-jets located on the combustor dump plane, into the outer recirculation zone, results in a stable V shape flame. It is clearly seen that the ORZ dilution can eliminate the combustion instability without inhibiting the combustion efficiency. A special focus is placed on the impact of the diluent injection on the local flame-flow interaction. The nitrogen micro-jets increase the local nitrogen concentration by 7% on average, lowering the flame speed and extinction strain rates by 27% and 17% respectively. Moreover, the micro-jets increase the turbulence intensity in the ORZ, leading to a significant increase in the Karlovitz number and transferring the local combustion regime from the thin reaction zone regime to the broken reaction zone regime. Hence, the nitrogen micro-jets impact on both the turbulence and the chemical reaction rates prevents flame propagation into the ORZ and results in a stable flame.  相似文献   

14.
An experimental setup for the generation and investigation of periodic equivalence ratio oscillations in laminar premixed flames is presented. A special low-pressure burner was developed which generates stable flames in a wide pressure range down to 20 mbar and provides the possibility of rapid mixture fraction variations. The technical realization of the mixture fraction variations and the characteristics of the burner are described. 1D laser Raman scattering was applied to determine the temperature and concentration profiles of the major species through the flame front in correlation to the phase-angle of the periodic oscillation. OH* chemiluminescence was detected to qualitatively analyze the response of the flame to mixture fraction variations by changing shape and position. Exemplary results from a flame at p=69 mbar, forced at a frequency of 10 Hz, are shown and discussed. The experiments are part of a cooperative research project including the development of kinetic models and numerical simulation tools with the aim of a better understanding and prediction of periodic combustion instabilities in gas turbines. The focus of the current paper lies on the presentation of the experimental realization and the measuring techniques.  相似文献   

15.
Turbulent premixed flames often experience thermoacoustic instabilities when the combustion heat release rate is in phase with acoustic pressure fluctuations. Linear methods often assume a priori that oscillations are periodic and occur at a dominant frequency with a fixed amplitude. Such assumptions are not made when using nonlinear analysis. When an oscillation is fully saturated, nonlinear analysis can serve as a useful avenue to reveal flame behaviour far more elaborate than period-one limit cycles, including quasi-periodicity and chaos in hydrodynamically or thermoacoustically self-excited system. In this paper, the behaviour of a bluff-body stabilised turbulent premixed propane/air flame in a model jet-engine afterburner configuration is investigated using computational fluid dynamics. For the frequencies of interest in this investigation, an unsteady Reynolds-averaged Navier–Stokes approach is found to be appropriate. Combustion is represented using a modified laminar flamelet approach with an algebraic closure for the flame surface density. The results are validated by comparison with existing experimental data and with large eddy simulation, and the observed self-excited oscillations in pressure and heat release are studied using methods derived from dynamical systems theory. A systematic analysis is carried out by increasing the equivalence ratio of the reactant stream supplied to the premixed flame. A strong variation in the global flame structure is observed. The flame exhibits a self-excited hydrodynamic oscillation at low equivalence ratios, becomes steady as the equivalence ratio is increased to intermediate values, and again exhibits a self-excited thermoacoustic oscillation at higher equivalence ratios. Rich nonlinear behaviour is observed and the investigation demonstrates that turbulent premixed flames can exhibit complex dynamical behaviour including quasiperiodicity, limit cycles and period-two limit cycles due to the interactions of various physical mechanisms. This has implications in selecting the operating conditions for such flames and for devising proper control strategies for the avoidance of thermoacoustic instability.  相似文献   

16.
Bluff-body stabilized flames are susceptible to combustion instabilities due to interactions between acoustics, vortical disturbances, and the flame. In order to elucidate these flow-flame interactions during an instability, an experimental and computational investigation of the flame-sheet dynamics of a harmonically excited flame was performed. It is shown that the flame dynamics are controlled by three key processes: excitation of shear layer instabilities by the axially oscillating flow, anchoring of the flame at the bluff body, and the kinematic response of the flame to this forcing. The near-field flame features are controlled by flame anchoring and the far-field by kinematic restoration. In the near-field, the flame response grows with downstream distance due to flame anchoring, which prevents significant flame movement near the attachment point. Theory predicts that this results in linear flame response characteristics as a function of perturbation amplitude, and a monotonic growth in magnitude of the flame-sheet fluctuations near the stabilization point, consistent with the experimental data. Farther downstream, the flame response reaches a maximum and then decays due to the dissipation of the vortical disturbances and action of flame propagation normal to itself, which acts to smooth out the wrinkles generated by the harmonic flow forcing. This behavior is strongly non-linear, resulting in significant variation in far-field flame-sheet response with perturbation amplitude.  相似文献   

17.
A ‘reduced complexity’ equation is derived to investigate combustion instabilities of a Rijke burner. The equation is nonlinear and furnishes limit cycle solutions for finite amplitude burner modes. It is a generalisation to combustion flows of the Fant equation used to investigate the production of voiced speech by unsteady throttling of flow by the vocal folds [G. Fant, Acoustic Theory of Speech Production. Mouton, The Hague, 1960]. In the thermo-acoustic problem the throttling occurs at the flame holder. The Fant equation governs the unsteady volume flow past the flame holder which, in turn, determines the acoustics of the entire system. The equation includes a fully determinate part that depends on the geometry of the flame holder and the thermo-acoustic system, and terms defined by integrals involving thermo-aerodynamic sources, such as a flame and vortex sound sources. These integrals provide a clear indication of what must be known about the flow to obtain a proper understanding of the dynamics of the thermo-acoustic system. Illustrative numerical results are presented for the linearised equation. This governs the growth rates of the natural acoustic modes, determined by system geometry, boundary conditions and mean temperature distribution, which are excited into instability by unsteady heat release from the flame and damped by large scale vorticity production and radiation losses into the environment. In addition, the equation supplies information about the ‘combustion modes’ excited by the local time-delay feedback dynamics of the flame.  相似文献   

18.
Understanding the distinguishing physical properties of multi-element lean-premixed high hydrogen content flames is expected to be integral to the development of carbon-neutral, and ultimately carbon-free, gas turbine combustion systems. Despite their fundamental importance, the thermoacoustic and emission-related characteristics of such small-scale flame ensembles are not thoroughly understood, particularly for the full range of 0 to 100% hydrogen content blended with methane fuel. Here we investigate the structure and collective behavior of a multi-element lean-premixed hydrogen/methane/air flame ensemble using measurements of nitrogen oxides emissions and self-excited instability, combined with OH* and OH PLIF flame visualizations. Our results indicate that the system's responses can be classified into several distinctive stages according to their static and dynamic stability, including flame blowoff and thermoacoustically stable regions under relatively low hydrogen concentration conditions, low-frequency self-excited instabilities in intermediate hydrogen concentration, and triggering of intense pressure perturbations at about 1.7 kHz under high- or pure hydrogen combustion conditions. While the low-frequency combustion dynamics are dominated by axisymmetric translational movements of parallel flame fronts, the higher frequency response originates from significant lateral modulations accompanied by small-scale vortical rollup and flame surface annihilation due to front merging and pinch-off. Longitudinal-to-transverse dynamic transition is observed to play a mechanistic role in kinematically accommodating higher-frequency heat release rate fluctuations, and this newly identified mechanism suggests the possibility of high-frequency transverse modes, if such lateral motions are strong enough to induce inter-element flame interactions. In contrast to the substantial differences in thermoacoustic properties for different fuel compositions, the total nitrogen oxides emissions are found to depend primarily on adiabatic flame temperature; the influence of fuel composition is limited to approximately 20% under the inlet conditions considered.  相似文献   

19.
A mathematical model for the laminar diffusion combustion of gases in the absence of forced convection is developed. This combustion mode is realized near an orifice in the partition that separates the fuel and oxidizer. The stationary solution, size and shape of the flame, temperature distribution, and profiles of the concentrations of fuel, oxidizer, and combustion products are determined. It is shown that the limiting diameter of the diffusion flame is inversely proportional to the burning rate of an equivalent premixed mixture of the same fuel and oxidizer, whereas the flame length is proportional to the diameter of the orifice. The unsteady (quasi-stationary) solution to this problem for the case where the gas is confined in a finite-volume vessel is obtained. The time it takes the flame to approach the partition of the vessel with fuel and enter inside is determined. Experiments on studying the diffusion combustion of natural gas in the absence of forced convection near orifices and a slit in the partition separating the gaseous fuel and oxidizer in a finite-volume vessel are performed. The time of combustion is obtained. Depending on the orifice diameter and slit width, three modes of diffusion combustion were identified: combustion above the partition ending in flame extinction, combustion with a breakthrough, and combustion inside the vessel (submerged flame).  相似文献   

20.
Combustion instabilities depend on a variety of parameters and operating conditions. It is known, especially in the field of liquid rocket propulsion, that the pressure loss of an injector has an effect on its dynamics and on the coupling between the combustion chamber and the fuel manifold. However, its influence is not well documented in the technical literature dealing with gas turbine combustion dynamics. Effects of changes in this key design parameter are investigated in the present article by testing different swirlers at constant thermal power on a broad range of injection velocities in a well controlled laboratory scale single injector swirled combustor using liquid fuel. The objective is to study the impact of injection pressure losses on the occurrence and level of combustion instabilities by making use of a set of injectors having nearly the same outlet velocity profiles, the same swirl number and that establish flames that are essentially identical in shape. It is found that combustion oscillations appear on a wider range of operating conditions for injectors with the highest pressure loss, but that the pressure fluctuations caused by thermoacoustic oscillations are greatest when the injector head loss is low. Four types of instabilities coupled by two modes may be distinguished: the first group features a lower frequency, arises when the injector pressure loss is low and corresponds to a weakly coupled chamber-plenum mode. The second group appears in the form of a constant amplitude limit cycle, or as bursts at a slightly higher frequency and is coupled by a chamber mode. Spontaneous switching between these two types of instabilities is also observed in a narrow domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号