首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
通过简单的溶剂热法合成了锌黄锡矿结构的Cu2ZnSnS4(CZTS)纳米晶,使用L-半胱氨酸作硫源和络合剂,以金属氯化物作前驱体,在180°C下反应16h成功获得了CZTS微球.使用X射线衍射(XRD)仪,场发射扫描电子显微镜(FESEM)、能量色散谱(EDS)、高分辨透射电子显微镜(HRTEM)、多功能X射线光电子能谱仪(XPS)、紫外-可见(UV-Vis)分光光度计对产物的物相、结构、形貌及光学性能进行表征.结果表明:所得的产物为纯相锌黄锡矿结构的CZTS纳米颗粒,CZTS微球直径为400-800nm,并可观察到微球是由大量厚度约20nm的纳米片构成;将CZTS颗粒均匀分散在异丙醇中,测试后估算其禁带宽度约1.58eV,与薄膜太阳能电池所需的最佳禁带宽度相近.并对其形成机理进行了初步探讨.  相似文献   

2.
Large-area Sb2Te3 nanowire arrays   总被引:2,自引:0,他引:2  
High-density large-area nanowire arrays of thermoelectric material Sb(2)Te(3) have been successfully prepared using electrochemical deposition into the channels of the porous anodic alumina membrane. The morphologies, structure, and composition of the as-prepared Sb(2)Te(3) nanowires have been characterized using field-emission scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Individual Sb(2)Te(3) nanowires are single crystalline and continuous with uniform diameters ( approximately 50 nm) throughout the entire length. The atomic ratio of Sb to Te is very close to the 2:3 stoichiometry.  相似文献   

3.
《Chemical physics letters》2002,350(3-4):220-223
Polycrystalline Cu(OH)2 nanowires with an average diameter of ca. 8 nm and lengths of up to hundreds of micrometers were synthesized by using a simple chemical route at ambient temperature. The crystallity, purity, morphology, and structure features of the as-prepared Cu(OH)2 nanowires were investigated by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The growth mechanism of the Cu(OH)2 nanowires were studied in detail.  相似文献   

4.
大面积Bi单晶纳米线阵列的制备   总被引:1,自引:1,他引:0  
在有序的氧化铝模板(AAO)的孔洞中, 采用电化学沉积工艺成功地制备了准金属Bi纳米线有序阵列. 使用X射线衍射仪(XRD)、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)及高分辨电子显微镜(HRTEM)对样品的结构和形貌进行了表征. XRD结果表明, 所制备的铋样品为六方相, 且沿[110]方向有很好的生长取向; FE-SEM图片清晰地说明铋纳米线阵列是大面积、填充率高和高度有序的; TEM的结果显示纳米线直径均匀、表面光滑且长径比大; HRTEM图片中清晰的晶格条纹和选区电子衍射(SAED)结果表明纳米线是单晶.  相似文献   

5.
采用双槽控电位法在阳极氧化铝(AAO)模板中制备了有序均一的[NiFe/Cu/Co/Cu]n多层纳米线阵列,并在不同温度下进行了热处理.利用X射线衍射(XRD)对热处理前后多层线的晶体结构进行了测试.考察了不同退火温度对多层线矫顽力、剩磁比、巨磁电阻(GMR)效应、磁灵敏度的影响.随热处理温度升高,多层纳米线中磁性微晶晶型取向越来越明显,晶体结构更均匀;多层纳米线的矫顽力和剩磁比先增大后减小.300°C下多层纳米线矫顽力达到最大值,GMR最大值可达59%,对应的磁电阻灵敏度(SV)为0.233%Oe-1.  相似文献   

6.
周文辉  周艳丽  郭洁  李梅  武四新 《化学研究》2012,23(5):70-73,79
以金属氯化物为金属源,硫脲为硫源,聚乙二醇和乙二醇为混合溶剂,采用溶剂热法一步合成了花状的铜锌锡硫纳米颗粒.利用X射线衍射仪,扫描电子显微镜、能谱仪、透射电子显微镜、紫外-可见分光光度计分析了铜锌锡硫纳米颗粒的物相、结构、形貌及光学性能,并初步探讨了铜锌锡硫的生长机理.结果表明,所得到的铜锌锡硫纳米颗粒具有锌黄锡矿结构,直径在500~2 000nm范围内可调,其中花状的铜锌锡硫纳米颗粒由大量厚度约25nm的纳米片构成.所制备的铜锌锡硫纳米颗粒对可见光具有明显的吸收;利用外延法推算得到其禁带宽度约为1.5eV,与太阳能电池所需的最佳禁带宽度相近,显示其有望在新一代太阳能电池中得到应用和推广.  相似文献   

7.
采用电沉积法,在阳极氧化铝(AAO)模板中制备了[NiFe/Cu/Co/Cu]n多层纳米线.利用扫描电子显微镜(SEM)及透射电子显微镜(TEM)对纳米多层线的表面形貌及结构进行了表征,纳米线阵列高度有序、直径均一、层状结构清晰,NiFe层厚度约40 nm,Cu层厚度约60 nm,Co层厚度约15 nm,各子层厚度可控.利用X射线能谱分析仪(EDS)对纳米多层线NiFe层的成分进行了测试,Ni,Fe的原子比为4:1.利用X射线衍射仪(XRD)对[NiFe/Cu/Co/Cu]n纳米多层膜和多层线结构进行了测试,多层膜为面心立方(fcc)结构,多层线NiFe层为面心立方(fcc)结构,Cu层为六方密排hcp(100),Co层为面心立方(fcc)结构.与组成、结构完全相同的多层膜相比,[NiFe/Cu/Co/Cu]n多层纳米线具有更优越的巨磁电阻性能.  相似文献   

8.
以乙酰丙酮铜、醋酸锌、二氯亚锡、油胺和硫粉为前驱体,采用one-pot法合成出了单分散的Cu2ZnSnS4(CZTS)纳米晶.所得样品采用X射线粉末衍射仪(XRD),能量色散谱仪(EDS),透射电子显微镜(TEM),高分辨透射电子显微镜(HRTEM),光电子能谱仪(XPS),紫外-可见光谱仪(UV-vis)和Z-扫描(Z-scan)技术对其结构组成、形貌、性能等进行了表征.结果表明:所获得的产物为四方相结构的六边形CZTS纳米颗粒,直径约为10 nm.计算出尺寸大小为10 nm,13 nm的纳米晶的三阶非线性光学折射率γ(-1.08×10-15,-9.08×10-17 m2·W-1),三阶非线性光学吸收系数β(6.5×10-9,3.69×10-11 m·W-1)以及三阶非线性光学极化率χ(3)(1.49×10-9,4.35×10-10 esu).并探讨了CZTS纳米晶可能的形成机理,及引起三阶光学非线性发生变化的原因。  相似文献   

9.
Zhuang Z  Su X  Yuan H  Sun Q  Xiao D  Choi MM 《The Analyst》2008,133(1):126-132
CuO nanowires have been prepared and applied for the fabrication of glucose sensors with highly enhanced sensitivity. Cu(OH)(2) nanowires were initially synthesised by a simple and fast procedure, CuO nanowires were then formed simply by removing the water through heat treatment. The structures and morphologies of Cu(OH)(2) and CuO nanowires were characterised by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The direct electrocatalytic oxidation of glucose in alkaline medium at CuO nanowire modified electrodes has been investigated in detail. Compared to a bare Cu electrode, a substantial decrease in the overvoltage of the glucose oxidation was observed at the CuO nanowire electrodes with oxidation starting at ca. 0.10 V vs. Ag/AgCl (saturated KCl). At an applied potential of 0.33 V, CuO nanowire electrodes produce high and reproducible sensitivity to glucose with 0.49 microA/micromol dm(-3). Linear responses were obtained over a concentration range from 0.40 micromol dm(-3) to 2.0 mmol dm(-3) with a detection limit of 49 nmol dm(-3) (S/N = 3). The CuO nanowire modified electrode allows highly sensitive, low working potential, stable, and fast amperometric sensing of glucose, thus is promising for the future development of non-enzymatic glucose sensors.  相似文献   

10.
Large-area ordered Ni nanowire arrays with different diameters have been fabricated by the direct current electrodeposition into the holes of porous anodic alumina membrane. The crystal structure and micrograph of nanowire arrays are characterized by X-ray diffraction, field-emission scanning electron microscopy and high-resolution transmission electron microscopy. The results indicate that the growth orientation of Ni nanowires turns from [110] to [111] direction with increasing diameters of nanowires. The mechanism of the growth was discussed in terms of interface energy minimum principle. The size-dependent orientation of Ni nanowire arrays has the important significance for the design and control of nanostructures.  相似文献   

11.
The current report describes the systematic synthesis of polycrystalline, multiferroic MnWO4 nanowires and nanowire arrays with controllable chemical composition and morphology, using a modified template-directed methodology under ambient room-temperature conditions. We were able to synthesize nanowires measuring 55±10, 100±20, and 260±40 nm in diameter, respectively, with lengths ranging in the microns. Extensive characterization of as-prepared samples has been performed using X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and energy-dispersive X-ray spectroscopy. Magnetic behavior in these systems was also probed.  相似文献   

12.
CuV2O6 nanowires were prepared via a simple hydrothermal route using NH4VO3 and Cu(NO3)2 as starting materials. The structures and electrochemical properties of CuV2O6 nanowires were characterized by means of X-ray diffraction(XRD), scanning electron microscopy(SEM) and transmission electron microscopy(TEM). The results show that the CuV2O6 nanowires are about 100 nm in width and single crystalline grown along [001] direction. CuV2O6 nanowires delivered a high initial discharge capacity of 435 and 351 mA·h/g at current densities of 50 and 100 mA·h/g, respectively. The electrochemical kinetics of the CuV2O6 nanowires was also investigated by means of electrochemical impedance spectroscopy(EIS) and the poor rate performance was observed, which may be attributed to the low ion diffusion coefficient of the CuV2O6 nanowires.  相似文献   

13.
Here we present for the very first time a single-crystal investigation of the Cu-poor Zn-rich derivative of Cu(2)ZnSnS(4). Nowadays, this composition is considered as the one that delivers the best photovoltaic performances in the specific domain of Cu(2)ZnSnS(4)-based thin-film solar cells. The existence of this nonstoichiometric phase is definitely demonstrated here in an explicit and unequivocal manner on the basis of powder and single-crystal X-ray diffraction analyses coupled with electron microprobe analyses. Crystals are tetragonal, space group I ?4, Z = 2, with a = 5.43440(15) ? and c = 10.8382(6) ? for Cu(2)ZnSnS(4) and a = 5.43006(5) ? and c = 10.8222(2) ? for Cu(1.71)Zn(1.18)Sn(0.99)S(4).  相似文献   

14.
以多孔阳极氧化铝(AAO)为模板,采用双槽法电沉积工艺制得高度有序的Cu/Ni多层纳米线阵列。利用扫描电镜(SEM)和透射电镜(TEM)对Cu/Ni多层纳米线进行了表征,观察到纳米线表面平滑,多层结构清晰,各子层厚度均匀,直径约为 100 nm,与AAO模板孔径基本一致。由选区电子衍射(SAED)照片可知,多层纳米线中Cu层和Ni层均为单晶结构。振动样品磁强计(VSM)测试结果表明,Cu/Ni多层纳米线阵列具有明显的垂直磁各向异性,外加磁场垂直和平行于AAO模板表面时,磁滞回线的矩形比分别为 0.701 和 0.101 ,矫顽力分别为 589 Oe和 202 Oe。通过控制铝阳极氧化工艺及电沉积时间,可获得不同直径、不同子层厚度的Cu/Ni多层纳米线阵列。  相似文献   

15.
The influence of effective deposition potential on the orientation and diameter of Bi(1-x)Sbx alloy nanowire arrays by pulsed electrodeposition technique was reported. X-ray diffraction, field-emission scanning electron microscopy, and transmission electron microscopy analysis show that the orientation of the Bi(1-x)Sbx nanowires can be turned from the [110] to the [202] direction by increasing the effective deposition potential, and the nanowires fully fill in the pores of the AAM in the lower potential region, while in the higher potential region the nanowires partly fill the pores of the AAM. The origin of those phenomena and the growth mechanism of the nanowire are discussed together with composition analysis.  相似文献   

16.
In this paper, CuO, CuO/Cu2O, Cu2O, Cu2O/Cu and Cu microcrystals were synthesized via a hydrothermal method by mixing Cu(NO3)2·3H2O and NaOH together in the presence of an ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate([BMIM]BF4) or 1-butyl-3-methylimidazolium chloride([BMIM]Cl). The structures and the morphologies of the obtained products were characterized by means of X-ray diffractometer(XRD), field-emission scanning electron microscopy/energy-dispersive spectroscopy(FESEM/EDS), transmission electron microscopy/selected area electron diffraction(TEM/SAED) and Raman spectroscopy. The result of XRD indicates that Cu2O and Cu microcrystals are cubic phase and the Raman spectra confirm the presence of carbon. The results of FESEM and TEM images show Cu2O microcrystals as rule cubes of 2 μm in length and Cu particles of 5 μm in diameter. According to the difference between crystal structures, bi-component and single component products were synthesized by adjusting the reaction conditions. A possible formation mechanism of Cu2O and Cu was proposed in[BMIM]BF4.  相似文献   

17.
泡沫镍负载的NiCo2O4纳米线阵列电极的超级电容性能   总被引:1,自引:0,他引:1  
采用无模板自然生长法制备了泡沫镍支撑的NiCo2O4纳米线阵列电极, 利用扫描电镜(SEM)和透射电镜(TEM)观测了纳米线的表面形貌, 利用X射线衍射(XRD)分析了纳米线的结构, 通过循环伏安、恒流充放电和交流阻抗测试了电极的超级电容性能. 结果表明: NiCo2O4纳米线直径约为500-1000 nm、长度约为10 μm, 垂直且密集地生长在泡沫镍骨架上. 纳米线阵列电极的放电比容量高达741 F·g-1, 循环420次后比容量仍保持在655 F·g-1, 电化学阻抗测试其电荷传递电阻仅为0.33 Ω, 420次循环后电荷传递电阻仅增加0.06 Ω.  相似文献   

18.
Novel hierarchical heterostructures formed by wrapping ZnS nanowires with highly dense SiO(2) nanowires were successfully synthesized by a vapor-liquid-solid process. The as-synthesized products were characterized using X-ray diffraction, scanning electron microscopy and transmission electron microscopy equipped with an energy-dispersive X-ray spectrometer. Studies indicate that a typical hierarchical ZnS/SiO(2) heterostructure consists of a single-crystalline ZnS nanowire (core) with diameter gradually decreasing from several hundred nanometers to 20 nm and adjacent amorphous SiO(2) nanowires (branches) with diameters of about 20 nm. A possible growth mechanism was also proposed for the growth of the hierarchical heterostructures.  相似文献   

19.
We report the synthesis and characterization of radial heterostructures composed of an antimony telluride (Sb2Te3) core and a germanium telluride (GeTe) shell, as well as an improved synthesis of Sb2Te3 nanowires. The synthesis of the heterostructures employs Au-catalyst-assisted vapor-liquid-solid (VLS) and vapor-solid (VS) mechanisms. Energy-dispersive X-ray spectrometry indicates that Sb and Ge are localized in the Sb2Te3 and GeTe portions, respectively, confirming the alloy-free composition in the core/shell heterostructures. Transmission electron microscopy and diffraction studies show that Sb2Te3 and GeTe regions exhibit rhombohedral crystal structure. Both Sb2Te3 and GeTe grow along the [110] direction with an epitaxial interface between them. Electrical characterization of individual nanowires and nanowire heterostructures demonstrates that these nanostructures exhibit memory-switching behavior.  相似文献   

20.
In-doped ZnO (IZO) nanowires have been synthesized by a thermal evaporation method. The morphology and microstructure of the IZO nanowires have been extensively investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). The products in general contain several kinds of nanowires. In this work, a remarkable type of IZO zigzag nanowire with a periodical twinning structure has been investigated by transmission electron microscopy (TEM). HRTEM observation reveals that this type of IZO nanowire has an uncommonly observed zinc blend crystal structure. These nanowires, with a diameter about 100 nm, grow along the [111] direction with a well-defined twinning relationship and a well-coherent lattice across the boundary. In addition, an IZO nanodendrite structure was also observed in our work. A growth model based on the vapor-liquid-solid mechanism is proposed for interpreting the growth of zigzag nanowires in our work. Due to the heavy doping of In, the emission peak in photoluminescence spectra has red-shifted as well as broadened seriously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号