首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An intramolecular formal metal-free intramolecular [2 + 2 + 2] cycloaddition for the formation of pyridines has been investigated with M06-2X and B3LYP density functional methods, and compared to the experimentally established three-step mechanism that involves ene reaction-Diels-Alder reaction-hydrogen transfer. The ene reaction of two alkynes is the rate-determining step. This is considerably easier than other possible mechanisms, such as those involving an ene reaction of an alkyne with a nitrile, a one-step [2 + 2 + 2] cycloaddition, or a 1,4-diradical mechanism. The relative facilities of these processes are analyzed with the distortion-interaction model. A bimolecular hydrogen-transfer mechanism involving a radical-pair intermediate is proposed rather than a concerted intramolecular 1,5-hydrogen shift for the last step in the mechanism.  相似文献   

2.
With the aid of computations and experiments, the detailed mechanism of the phosphine-catalyzed [3+2] cycloaddition reactions of allenoates and electron-deficient alkenes has been investigated. It was found that this reaction includes four consecutive processes: 1) In situ generation of a 1,3-dipole from allenoate and phosphine, 2) stepwise [3+2] cycloaddition, 3) a water-catalyzed [1,2]-hydrogen shift, and 4) elimination of the phosphine catalyst. In situ generation of the 1,3-dipole is key to all nucleophilic phosphine-catalyzed reactions. Through a kinetic study we have shown that the generation of the 1,3-dipole is the rate-determining step of the phosphine-catalyzed [3+2] cycloaddition reaction of allenoates and electron-deficient alkenes. DFT calculations and FMO analysis revealed that an electron-withdrawing group is required in the allene to ensure the generation of the 1,3-dipole kinetically and thermodynamically. Atoms-in-molecules (AIM) theory was used to analyze the stability of the 1,3-dipole. The regioselectivity of the [3+2] cycloaddition can be rationalized very well by FMO and AIM theories. Isotopic labeling experiments combined with DFT calculations showed that the commonly accepted intramolecular [1,2]-proton shift should be corrected to a water-catalyzed [1,2]-proton shift. Additional isotopic labeling experiments of the hetero-[3+2] cycloaddition of allenoates and electron-deficient imines further support this finding. This investigation has also been extended to the study of the phosphine-catalyzed [3+2] cycloaddition reaction of alkynoates as the three-carbon synthon, which showed that the generation of the 1,3-dipole in this reaction also occurs by a water-catalyzed process.  相似文献   

3.
The intramolecular [4C+3C] cycloaddition reaction of allenedienes catalysed by PtCl(2) and several Au(I) complexes has been studied by means of DFT calculations. Overall, the reaction mechanism comprises three main steps: (i) the formation of a metal allyl cation intermediate, (ii) a [4C(4π)+3C(2π)] cycloaddition that produces a seven-membered ring and (iii) a 1,2-hydrogen migration process on these intermediates. The reaction proceeds with complete diastereochemical control resulting from a favoured exo-like cycloaddition. Allene substituents have a critical influence in the reaction outcome and mechanism. The experimental observation of [4C+2C] cycloadducts in the reaction of substrates lacking substituents at the allene terminus can be explained through a mechanism involving Pt(IV)-metallacycles. With gold catalysts it is also possible to obtain [4C+2C] cycloaddition products, but only with substrates featuring terminally disubstituted allenes, and employing π-acceptor ligands at gold. However the mechanism for the formation of these adducts is completely different to that proposed with PtCl(2), and consists of the formation of a metal allyl cation, subsequent [4C+3C] cycloaddition and a 1,2-alkyl shift (ring contraction). Electronic analysis indicates that the divergent pathways are mainly controlled by the electronic properties of the gold heptacyclic species (L-Au-C(2)), in particular, the backdonation capacity of the metal center to the unoccupied C(2) (pπ-orbital) of the intermediate resulting from the [4C+3C] cycloaddition. The less backdonation, (i.e. using P(OR)(3)Au(+) complexes), the more favoured is the 1,2-alkyl shift.  相似文献   

4.
Possible reaction pathways of nitroethylene with the Si(100)-2 x 1 surface have been investigated by unrestricted density functional theory. The facile occurrence of the studied reactions was demonstrated by the low activation energies of the rate-determining steps (1.07-5.23 kcal/mol). It was found that the [4 + 2] cycloaddition reaction of nitroethylene is most kinetically favorable. The isomerization reactions of the addition products were also investigated. The [3 + 2] cycloaddition product may further undergo a rearrangement by overcoming a 12.37 kcal/mol activation energy barrier into an isomer, with an oxygen atom of the nitryl group inserted between two silicon atoms of the Si(100) surface.  相似文献   

5.
The domino reactions of alkyne-tethered N-mesylhydrazones yielding fused polycyclic pyrazoles have been studied within the Molecular Electron Density Theory (MEDT). Analysis of the Gibbs free energies indicates that the more favourable reactive path is the one in which the elimination of mesylate anion takes place before the intramolecular [3 + 2] cycloaddition (IM32CA) reaction, which corresponds with the rate-determining step of these domino processes. ELF topological analysis of the bond formation along the IM32CA reaction indicates that in spite of the high activation energy associated to this intramolecular reaction, it shows a pmr-type mechanism characterised by the presence of a pseudoradical carbon at the phenyldiazomethane framework.  相似文献   

6.
The molecular mechanism of the domino inter [4 + 2]/intra [3 + 2] cycloaddition reactions of nitroalkenes with enol ethers to give nitroso acetal adducts has been characterized using density functional theory methods with the B3LYP functional and the 6-31G basis set. The presence of Lewis acid catalyst and solvent effects has been taken into account to model the experimental environment. These domino processes comprise two consecutive cycloaddition reactions: the first one is an intermolecular [4 + 2] cycloaddition of the enol ether to the nitroalkene to give a nitronate intermediate, which then affords the final nitroso acetal adduct through an intramolecular [3 + 2] cycloaddition reaction. The intermolecular [4 + 2] cycloaddition can be considered as a nucleophilic attack of the enol ether to the conjugated position of the nitroalkene, with concomitant ring closure and without intervention of an intermediate. For this cycloaddition process, the presence of the Lewis acid favors the delocalization of the negative charge that is being transferred from the enol ether to the nitroalkene and decreases the activation energy of the first cycloaddition. The [4 + 2] cycloaddition presents a total regioselectivity, while the endo/exo stereoselectivity depends on the bulk of the Lewis acid used as catalyst. Thus, for small Lewis acid catalyst, modeled by BH(3), the addition presents an endo selectivity. The [3 + 2] cycloaddition reactions present an total exo selectivity, due to the constraints imposed by the tether. Inclusion of Lewis acid catalyst and solvent effects decrease clearly the barrier for the first [4 + 2] cycloaddition relative to the second [3 + 2] one. Calculations for the activation parameters along this domino reaction allow to validate the results obtained using the potential energy barriers.  相似文献   

7.
The reaction pathways for the photochemical formation of cyclobutane thymine dimers in DNA are explored using hybrid density functional theory techniques. It is concluded that the thymine-thymine [2 + 2] cycloaddition displays favorable energy barriers and reaction energies in both the triplet and the singlet excited states. The stepwise cycloaddition in the triplet excited state involves the initial formation of a diradical followed by ring closure via singlet-triplet interaction. The triplet mechanism is thus completely different from the concerted singlet state cycloaddition processes. The key geometric features and electron spin densities are also discussed. Bulk solvation has a major effect by reducing the barriers and increasing the diradical stabilities. The present results provide a rationale for the faster cycloreaction observed in the singlet excited states than in the triplet excited states.  相似文献   

8.
The molecular mechanism for the intramolecular [5 + 2] cycloaddition reaction of beta-silyloxy-gamma-pyrones bearing tethered alkenes has been characterized using ab initio methods. A comparative study for this sort of cycloaddition carried out at different computational levels points out that the B3LYP/6-31G calculations give similar barriers to those obtained with the MP3/6-31G level. Analysis of the energetic results shows that the reaction takes place along a stepwise process: first, the migration of the neighboring silyl group to the carbonyl group of the gamma-pyrone takes place to give a weak oxidopyrylium ylide intermediate, which by a subsequent concerted intramolecular [5 + 2] cycloaddition affords the final cycloadduct. The cycloaddition process is very stereoselective due to the constraints imposed by the tether. The [5 + 2] cycloaddition reaction has a large barrier, and the presence of the silyloxy group and the intramolecular character of the process are necessary to ensure the thermodynamic and kinetic feasibility of these cycloadditions.  相似文献   

9.
Catalytic asymmetric 1,4-addition and [3 + 2] cycloaddition reactions using chiral calcium species prepared from calcium isopropoxide and chiral bisoxazoline ligands have been developed. Glycine Schiff bases reacted with acrylic esters to afford 1,4-addition products, glutamic acid derivatives, in high yields with high enantioselectivities. During the investigation of the 1,4-addition reactions, we unexpectedly found that a [3 + 2] cycloaddition occurred in the reactions with crotonate derivatives, affording substituted pyrrolidine derivatives in high yields with high enantioselectivities. On the basis of this finding, we investigated asymmetric [3 + 2] cycloadditions, and it was revealed that several kinds of optically active substituted pyrrolidine derivatives containing contiguous stereogenic tertiary and quaternary carbon centers were obtained with high diastereo- and enantioselectivities. In addition, optically active pyrrolidine cores of hepatitis C virus RNA-dependent polymerase inhibitors and potential effective antiviral agents have been synthesized using this [3 + 2] cycloaddition reaction. NMR spectroscopic analysis and observation of nonamplification of enantioselectivity in nonlinear effect experiments suggested that a monomeric calcium species with an anionic ligand was formed as an active catalyst. A stepwise mechanism of the [3 + 2] cycloaddition, consisting of 1,4-addition and successive intramolecular Mannich-type reaction was suggested. Furthermore, modification of the Schiff base structure resulted in a modification of the reaction course from a [3 + 2] cycloaddition to a 1,4-addition, affording 3-substituted glutamic acid derivatives with high diasterero- and enantioselectivities.  相似文献   

10.
Diphenylprolinol silyl ether was found to be an effective organocatalyst for promoting the asymmetric, catalytic, intramolecular [6 + 2] cycloaddition reactions of fulvenes substituted at the exocyclic 6-position with a δ-formylalkyl group to afford synthetically useful linear triquinane derivatives in good yields and excellent enantioselectivities. The cis-fused triquinane derivatives were obtained exclusively; the trans-fused isomers were not detected among the reaction products. The intramolecular [6 + 2] cycloaddition occurs between the fulvene functionality (6π) and the enamine double bond (2π) generated from the formyl group in the substrates and the diphenylprolinol silyl ether. The absolute configuration of the reaction products was determined by vibrational circular dichroism. The reaction mechanism was investigated using molecular orbital calculations, B3LYP and MP2 geometry optimizations, and subsequent single-point energy evaluations on model reaction sequences. These calculations revealed the following: (i) The intermolecular [6 + 2] cycloaddition of a fulvene and an enamine double bond proceeds in a stepwise mechanism via a zwitterionic intermediate. (ii) On the other hand, the intramolecular [6 + 2] cycloaddition leading to the cis-fused triquinane skeleton proceeds in a concerted mechanism via a highly asynchronous transition state. (iii) The fulvene functionality and the enamine double bond adopt the gauche-syn conformation during the C-C bond formation processes in the [6 + 2] cycloaddition. (iv) The energy profiles calculated for the intramolecular reaction explain the observed exclusive formation of the cis-fused triquinane derivatives in the [6 + 2] cycloaddition reactions. The reasons for the enantioselectivity seen in these [6 + 2] cycloaddition reactions are also discussed.  相似文献   

11.
A detailed account regarding a formal [3 + 3] cycloaddition method using 4-hydroxy-2-pyrones and 1,3-diketones is described here. This formal cycloaddition reaction or annulation reaction is synthetically useful for constructing 2H-pyranyl heterocycles. The usage of alpha,beta-unsaturated iminium salts is significant in controlling competing reaction pathways to give exclusively 2H-pyrans. Most significantly, experimental evidence is provided to support the mechanism of this reaction that involves a sequential Knoevenagel condensation and a reversible 6pi-electron electrocyclic ring-closure of 1-oxatrienes.  相似文献   

12.
In this paper, the mechanisms of the intermolecular [3+2] and [1+2] cycloaddition reactions of 1,1/1,3-dipolar π-delocalized singlet vinylcarbenes, which is obtained from cyclopropenone, with an electron-deficient C═O or C═C dipolarophile, to generate five-membered ring products are first disclosed by the density functional theory (DFT). Four reaction pathways, including two concerted [3+2] cycloaddition reaction pathways and two stepwise reaction pathways (an initial [1+2] cycloaddition and then a rearrangement from the [1+2] cycloadducts to the final [3+2] cycloadducts), are investigated at the B3LYP/6-31G(d,p) level of theory. The calculated results reveal that, in contrast to the concerted C═O [3+2] cycloaddition reaction pathway, which is 7.1 kcal/mol more energetically preferred compared with its stepwise reaction pathway, the C═C dipolarophile favors undergoing [1+2] cycloaddition rather than concerted [3+2] cycloaddition (difference of 5.3 kcal/mol). The lowest free energy barrier of the C═O concerted [3+2] cycloaddition reaction pathway shows that it predominates all other reaction pathways. This observation is consistent with the finding that the C═O [3 + 2] cycloadduct is the main product under experimental conditions. In addition, natural bond orbital second-order perturbation charge analyses are carried out to explain the preferred chemoselectivity of C═O to the C═C dipolarophile and the origins of cis-stereoselectivity for C═C [1+2] cycloaddition. Solvent effects are further considered at the B3LYP/6-31G(d,p) level in the solvents CH(3)CN, DMF, THF, CH(2)Cl(2), toluene, and benzene using the PCM model. The results indicate that the relative reaction trends and the main products are insensitive to the polarity of the reaction solvent.  相似文献   

13.
方德彩 《化学进展》2012,24(6):879-885
[2+2]环加成反应是有机化学中非常重要的一类反应,其机理的研究一直是实验和理论工作者关注的课题之一。本文从理论的角度综述了三类[2+2]环加成反应的反应机理,即简单烯烃或炔烃参与的环加成反应、累积双键体系参与的环加成反应以及稀土钍化合物参与的环加成反应, 得出对于简单的烯烃或炔烃之间的环加成反应一般是按双自由基机理进行,而其他两类反应主要按协同或两性离子方式进行,并且从前线分子轨道作用理论角度分析了产生不同反应机理的原因。  相似文献   

14.
Recently, it was reported that both dienylfurans and dienylisobenzofurans could react with dimethyl acetylenedicarboxylate (DMAD) to give [8+2] cycloadducts. Understanding these [8+2] reactions will aid the design of additional [8+2] reactions, which have the potential for the synthesis of 10-membered and larger carbocycles. The present Article is aimed to understand the detailed mechanisms of the originally reported [8+2] cycloaddition reaction between dienylisobenzofurans and alkynes at the molecular level through the joint forces of computation and experiment. Density functional theory calculations at the (U)B3LYP/6-31+G(d) level suggest that the concerted [8+2] pathway between dienylisobenzofurans and alkynes is not favored. A stepwise reaction pathway involving formation of a zwitterionic intermediate for the [8+2] reactions between dienylisobenzofurans that contain electron-donating methoxy groups present in their diene moieties and DMAD has been predicted computationally. This pathway is in competition with a Diels-Alder [4+2] reaction between the furan moieties of dienylisobenzofurans and DMAD. When there is no electron-donating group present in the diene moieties of dienylisobenzofurans, the [8+2] reaction occurs through an alternative mechanism involving a [4+2] reaction between the furan moiety of the tetraene and DMAD, followed by a [1,5]-vinyl shift. This computationally predicted novel mechanism was supported experimentally.  相似文献   

15.
[reactions: see text] A rhodium complex of N-heterocyclic carbene (NHC) has been developed for intra- and intermolecular [4 + 2] and intramolecular [5 + 2] cycloaddition reactions. This is the first use of a transition-metal NHC complex in a Diels-Alder-type reaction. For the intramolecular [4 + 2] cycloaddition reactions, all the dienynes studied were converted to their corresponding cycloadducts in 91-99% yields within 10 min. Moreover, up to 1900 turnovers have been obtained for the intramolecular [4 + 2] cycloaddition at 15-20 degrees C. For the intermolecular [4 + 2] cycloadditions, high yields (71-99%) of the corresponding cycloaddition products were obtained. The reaction time and yield were highly dependent upon the diene and the dienophile. For the intramolecular [5 + 2] cycloaddition reactions, all the alkyne vinylcyclopropanes studied were converted to their corresponding cycloadducts in 91-98% yields within 10 min. However, the catalytic system was not effective for an intermolecular [5 + 2] cycloaddition reaction.  相似文献   

16.
[reaction: see text] Ab initio and density functional studies (DFT) on cycloaddition reactions of 1,3-diazabuta-1,3-dienes with ketenes are reported. The vinylic (C=C) and the carbonyl (C=O) units of the ketenes are found to participate in concerted asynchronous [4 + 2] cycloaddition reactions. The transition states (3t, 4t, and 7t) for these paths have been located on the PE surface at the correlated levels of ab initio calculations. A reasonable mechanism for the formation of [4 + 2] and [2 + 2] adducts is presented.  相似文献   

17.
The structures of phosphinidene germylenoid HP=GeLiF were studied for the first time by using DFT (density functional theory) calculations. The geometries were optimized at the B3LYP/6-311+G (d, p) level at first and then the single-point energies were calculated at QCISD/6-311++G (d, p) level. Theoretical calculations predicted that HP=GeLiF has two equilibrium structures, the p-complex (1) and the three-membered-ring (2) structures, in which structure 1 has the lower energy and is more stable than 2. To exploit the reactivity of HP=GeLiF, the cycloaddition reaction of 1 and ethylene was investigated at the same level of theory. From the potential energy profile, we predicted that the cycloaddition reaction has one dominant reaction pathway. The calculated result shows that the dominant reaction pathway is a [2?+?2] cycloaddition reaction which is the interaction of two π bonds in HP=GeLiF and ethylene molecule, and a four-membered-ring P-heterocyclic germylene is formed. Since sp3 hybridization of Ge atom in this four-membered-ring germylene, it may further react with another ethylene and finally forming a spiro-Ge-heterocyclic compound involving phosphorus. This means that this reaction involves a [2?+?2] cycloaddition as the initial step, and then a [2?+?1] cycloaddition carried out.  相似文献   

18.
A novel cascade reaction has been developed for the synthesis of 2,6‐methanopyrrolo[1,2‐b]isoxazoles based on the gold‐catalyzed generation of an N‐allyloxyazomethine ylide. This reaction involves sequential [3+2]/retro‐[3+2]/[3+2] cycloaddition reactions, thus providing facile access to fused and bridged heterocycles which would be otherwise difficult to prepare using existing synthetic methods. Notably, this reaction allows the efficient construction of three C−C bonds, one C−O bond, one C−N bond and one C−H bond, as well as the cleavage of one C−C bond, one C−O bond and one C−H bond in a single operation. The intermolecular cycloaddition of an N‐allyloxyazomethine ylide and the subsequent application of the product to the synthesis of tropenol is also described.  相似文献   

19.
The selectivity and the nature of the mechanism of the competitive Lewis acid catalysed [4+2]/[2+2] cycloaddition reactions of 1-methyl-1-phenylallene (MPA) with methylacrylate (MA) have been theoretically studied within the Molecular Electron Density Theory using DFT methods at the B3LYP/6-31G(d) theoretical level. DFT reactivity indices indicate that MPA is a strong nucleophile and the LA-MA complex is a strong electrophile. The coordination of LA to MA enhances the reaction rate and increases the asynchronicity of the [4+2] CA reaction, changes the nature of the mechanism from one step to stepwise for the [2+2] CA reaction and increases the polar character of these cycloaddition reactions, which become demands a relatively low activation energy. Analysis of different energy profiles indicates that these competitive LA-catalysed CA reactions favour the formation of a mixture of meta regioisomers in both types of cycloaddition, in which the [4+2] cycloadducts were obtained in majority amount, in agreement with the experiment. Analysis based on Electron Localisation Function topological shows that the favoured [4+2] CA reaction takes place through a non-concerted two-stage one-step mechanism.  相似文献   

20.
Zhang XC  Cao SH  Wei Y  Shi M 《Organic letters》2011,13(5):1142-1145
An interesting phosphine-containing Lewis base catalyzed highly regioselective [3 + 2] cycloaddition and a novel nitrogen-containing Lewis base catalyzed highly geometric selective [4 + 2] cycloaddition of isatin derived α,β-unsaturated diesters with α-allenic ester have been disclosed to give the corresponding cyclic products in good to excellent yields under mild conditions. A plausible reaction mechanism has also been proposed on the basis of previous literature and our own investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号