首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The redox dye Neutral red (NR), adsorbed and electropolymerized at a roughened gold electrode, has been studied by Raman spectroscopy at λex of 676.4 nm in an electrochemical cell. Spectral bands have been assigned based on density functional theory (DFT) calculations. The number and position of the bands, as well as their intensity depend on electrode potential, allowing one to discern different redox forms of NR or its polymer. The observed changes in band positions and intensities have been analyzed. Electrooxidation of hydroquinone and ascorbic acid at a gold electrode modified with adsorbed or electropolymerized layer of NR has been studied with in situ Raman spectroelectrochemical technique. During electrooxidation of solution species, NR layer contains both oxidized and reduced forms of this modifier. It has been shown that the relative content of a reduced form of NR at electrode surface increases with increasing concentration of any of oxidizable species used. It has been concluded that anodic oxidation of ascorbic acid or hydroquinone at NR or polyNR modified electrode proceeds within the modifier layer rather than at a modifier/electrolyte interface. In this respect, electrooxidation follows a redox mechanism.  相似文献   

2.
Two processes of electrocatalytic oxidation of solution species at conducting polymer modified electrodes have been studied for the first time with in situ Resonance Raman spectroelectrochemical technique at a red laser excitation (λ = 632.8 nm), namely electrooxidation of hydroquinone at a sulfonated polyaniline modified electrode in an acidic solution and electrooxidation of ascorbic acid at polyaniline modified electrode in a pH-neutral solution. In both cases, characteristic Raman features have been identified for different redox forms of conducting polymers and changes in the net redox state of a polymer layer during electrooxidation of solution species have been studied. It has been shown that an increase in the concentration of oxidizable species causes an increase of the net content of a reduced form of polyaniline in the modifying layer. From this, the redox (vs. metal-like) mechanism of electrocatalysis at conducting polymer modified electrodes has been deduced.  相似文献   

3.
《Vibrational Spectroscopy》2008,48(2):105-112
The redox dye Toluidine Blue (TB), adsorbed and electropolymerized at a roughened gold electrode, has been studied by Raman spectroscopy at λex of 676.4 nm in an electrochemical cell. Most of the spectral bands have been assigned based on density functional theory (DFT) calculations. The number and position of the bands, as well as their intensity depend on electrode potential and solution pH, allowing one to discern different redox forms of TB or its polymer. Raman spectra, obtained in an acidic solution (pH 1.0) at a low electrode potential (−0.2 to 0.0 V vs. Ag/AgCl) are of low intensity, and correspond to the reduced (leucoform) of TB. At a higher potential (0.2–1.0 V), the intensity increases significantly, presumably due to resonance enhancement, and new bands appear, corresponding to oxidized form of TB. In a pH-neutral solution, the changes in spectra with varying electrode potential are less expressed. The observed changes in band positions and intensities have been analyzed.  相似文献   

4.
Journal of Solid State Electrochemistry - Electrooxidation of hydroquinone (HQ) to benzoquinone (BQ) has been studied by Raman spectroelectrochemistry at a gold electrode modified with adsorbed or...  相似文献   

5.
《Electroanalysis》2018,30(8):1653-1658
A gold electrode surface was functionalized by means of an electropolymerized conductive poly(3,4‐ethylenedioxythiophene) (PEDOT) organic layer. This modified electrode was used for the electrochemical detection of ascorbic (AA) and uric (UA) acids in an aqueous mixture with a selectivity around 340 mV. The electrochemical reactions kinetics were limited by AA diffusion and UA adsorption at the electrode surface, respectively. Following a previous study ([Electrochem Comm. 2011 , 13, 423–425]) cyclic voltammetry was used to provide a better understanding of the EC’ mechanism of regeneration of UA by AA. Experiments particularly showed that allantoin (i. e. the final product of UA oxidation) is not actually involved in the synergic mechanism but rather the oxidized UA product diimine which is adsorbed at the electrode surface.  相似文献   

6.
L-半胱氨酸自组装膜修饰金电极的电化学特性   总被引:6,自引:0,他引:6  
采用电化学石英晶体微天平(EQCM)和循环伏安法(CV)研究了L-半胱氨酸在金电极表面形成自组装膜的机理及其电化学性质.结果表明, L-半胱氨酸分子在金电极表面有特性吸附,而且在等电点pH附近因静电引力和氢键作用形成分子对,从而自组装形成双层膜.该膜电极在0.2 mol•L-1的醋酸缓冲溶液中,于-0.2~0.5 V(vs SCE)间CV扫描出现了一对稳定的氧化还原峰,并对抗坏血酸的氧化有良好的催化作用.  相似文献   

7.
The voltammetric behavior of dopamine (DA) and uric acid (UA) on a gold electrode modified with self‐assembled monolayer (SAM) of cysteamine (CA) conjugated with functionalized multiwalled carbon nanotubes (MWCNTs) was investigated. The film modifier of functionalized SAM was characterized by means of scanning electron microscopy (SEM) and also, electrochemical impedance spectroscopy (EIS) using para‐hydroquinone (PHQ) as a redox probe. For the binary mixture of DA and UA, the voltammetric signals of these two compounds can be well separated from each other, allowing simultaneous determination of DA and UA. The effect of various experimental parameters on the voltammetric responses of DA and UA was investigated. The detection limit in differential pulse voltammetric determinations was obtained as 0.02 µM and 0.1 µM for DA and UA, respectively. The prepared modified electrode indicated a stable behavior and the presence of surface COOH groups of the functionalized MWCNT avoided the passivation of the electrode surface during the electrode processes. The proposed method was successfully applied for the determination of DA and UA in urine samples with satisfactory results. The response of the gold electrode modified with MWCNT‐functionalized SAM method toward DA, UA, and ascorbic acid (AA) oxidation was compared with the response of the modified electrode prepared by the direct casting of MWCNT.  相似文献   

8.
This paper reports on the modification of gold electrodes with self‐assembled layers (SAMs) composed of meso‐2,3‐dimercaptosuccinic acid, cysteamine and gold nanoparticles, respectively and their application to quantitative determination of norepinephrine alone and in the presence of ascorbic and uric acids in solution at pH 7. The modification was carried out on two kinds of templates: a bare gold electrode (2D electrode) and a gold electrode coated in the first step with gold nanoparticles (3D electrode). Cyclic voltammograms reveal an enhancement of the norepinephrine electrooxidation in comparison to a bare, (non‐modified) gold electrode. The oxidation peaks for norepinephrine, ascorbic acid and uric acid have a peak‐to‐peak separation that enables their selective determination even in a complex mixture.  相似文献   

9.
The oxidation of phenosafranine at glassy carbon electrode gives rise to stable redox active electropolymerized film containing a polyazine moiety (poly(phenosafranine)). The redox response of the poly(phenosafranine) film was observed at the modified electrode at different pH and the pH dependence of the peak potential is 60 mV/pH, which is very close to the expected Nernstian behavior. The apparent diffusion coefficient (Dapp) of poly(phenosafranine) film was measured as 2.51 × 10−9 cm2/s. This film exhibits potent and persistent electron-mediating behavior followed by well-separated oxidation peaks towards ascorbic acid (AA), dopamine (DA) and serotonin with activation overpotential, which is 200 mV lower than that of the bare electrode for AA oxidation. Using differential pulse voltammetry (DPV) studies, the limit of detection of DA in the presence of AA is estimated to be in the submicromolar regime. This method has been used for determining DA and AA concentrations in real samples with satisfactory results.  相似文献   

10.
The potentials of the anodic peak of ascorbic acid oxidation and the potential differences of anodic and cathodic peaks (ΔE p) of the hydroquinone/benzoquinone redox system at an electrode made of a graphite-epoxy composite are determined in weakly acidic and neutral supporting electrolytes by direct and cyclic voltammetry. The results obtained are compared with thermodynamic values and with the available values of these parameters at different solid electrodes for the above-mentioned redox systems. The effect of aging of the surface of electrodes made of graphite-epoxy composites on the potentials and peak currents of the anodic oxidation of ascorbic acid are studied. It is demonstrated that the regeneration of the electrode surface by mechanically cutting thin layers is important for reducing the δE p value of the hydroquinone/benzoquinone redox system down to 28–30 mV in supporting electrolytes with pH 2.0 and 7.0. This value is typical of thermodynamically reversible electrode reactions involving two-electron transfer at 20–25°C.  相似文献   

11.
Neutral red was directly electropolymerized onto the carbon nanotubes modified electrode. A polymerized neutral red/carbon nanotubes composite film was characterized by scanning electron micrograph (SEM) and cyclic voltammetry (CV). Well‐defined voltammetric responses are observed for [Fe(CN)6]4?/3? on the composite film modified glassy carbon electrode. And it's found that this modified electrode has good catalysis on the redox of rutin. Differential pulse voltammetry method was used to determinate the concentration of rutin and obtain a linear equation between the current and concentration in a certain range. The modified electrode is satisfied with us for its good sensibility and stability.  相似文献   

12.
Liu T  Li M  Li Q 《Talanta》2004,63(4):1053-1059
Voltammetric behavior of dopamine (DA) on a gold electrode modified with the self-assembled monolayer (SAM) of N-acetylcysteine has been investigated, and one pair of well-defined redox peaks of dopamine is obtained at the SAM modified gold electrode. The oxidation peak current increases linearly with the concentration of dopamine in the range of  mol l−1. The detection limit is 8.0×10−7 mol l−1. This method will be applicable to the determination of dopamine in injection of dopamine hydrochloride, and the good recovery of dopamine is obtained. Furthermore, The SAM modified gold electrode can resolve well the voltammetric responses of dopamine and ascorbic acid (AA), so it can also be applied to the determination of dopamine in the presence of ascorbic acid.  相似文献   

13.
以1-丁基-3-甲基咪唑六氟磷酸盐离子液体作为溶剂和支持电解质,分别在铂电极和导电玻璃电极上电化学聚合得到了聚吡咯,聚合过程中发现,在离子液体中聚合的循环伏安图,其电流的变化和传统有机溶剂中的不同,通过交流阻抗技术研究了修饰电极的电化学性质,采用在线紫外、拉曼、红外谱对聚吡咯进行了光谱表征,得到了聚吡咯的特征峰,采用扫描电镜研究了聚合物的形貌。最后将修饰电极应用到了对对苯二酚的催化反应当中,显示了一定的催化作用。  相似文献   

14.
IntroductionPlatinumand gold surfaces can adsorb a wide vari-ety of ions, atoms and molecular functional groups,which is often accompanied by oxidation-reduction ordissociation of them. Numerous previous works havemade great progress in studying the surfa…  相似文献   

15.
《Electroanalysis》2006,18(23):2361-2368
The oxidation of benzophenone‐4 (2‐hydroxy‐4‐methoxybenzophenone‐5‐sulfonic acid) at glassy carbon electrode gives rise to stable redox active electropolymerized film during repetitive potential cycling between 0 to 1.3 V (Ag/AgCl). Cyclic voltammogram of poly(benzophenone‐4) film shows a redox couple with well‐defined peaks. The redox response of the modified electrode was found to be depending on the pH of the contacting solution. The peak potentials were shifted to a less positive region with increasing pH and the dependence of the peak potential was found to be 51 mV/pH. The electrocatalytic behavior of poly(benzophenone‐4) film modified electrode towards oxidation of dopamine, ascorbic acid and reduction of nitrite was investigated. The oxidation of dopamine and ascorbic acid occurred at less positive potential on poly(benzophenone‐4) film compared to bare glassy carbon electrode. For dopamine, the overpotential was reduced about 180 mV. Feasibility of utilizing poly(benzophenone‐4) film coated electrode in analytical estimation of dopamine, ascorbic acid and nitrite was also demonstrated.  相似文献   

16.
A ‘self-doped’ polyaniline modified microelectrode, prepared by cyclic potential sweep on a microdisk gold electrode from –0.2 to 0.85 V in 0.5 mol/L sulfuric acid containing aniline and o-aminobenzoic acid, has been developed. The copolymerized process and the resulting polymer characteristics were investigated in detail. This composite film indicated a good electrochemical activity in a wide pH range even in basic solution. Meanwhile, the redox couple exhibited an excellent electrocatalytic activity for the oxidation of ascorbic acid. The oxidation overpotential of ascorbic acid was decreased over 200 mV at this modified electrode compared with a bare gold one. Moreover, the effects of film thickness and pH on the catalytic efficiency were further studied. The dependence of catalytic currents on the concentration of ascorbic acid was linear in the range of 1.2 × 10–5~ 2.4 × 10–3 mol/L with a correlation coefficient of 0.996. Also, the determination of ascorbic acid in actual samples was evaluated and the results are satisfactory.  相似文献   

17.
Multi-walled carbon nanotube (MWCNT) is successfully immobilized on the surface of platinum electrode by mixing with DNA. The DNA/MWCNT modified electrodes are characterized by electrochemical impedance spectroscopy and cyclic voltammetry. Further research indicates that cytochrome c can strongly adsorbed on the surface of the modified electrode, and forms an approximate monolayer. The immobilized MWCNT can promote the redox of horse heart cytochrome c which gives reversible redox peaks with a formal potential of 81 mV vs SCE.  相似文献   

18.
《Analytical letters》2012,45(7):1289-1298
Abstract

Poly (acridine orange) (PAO) film–modified electrode was prepared by the electrooxidation of Acridine orange on a glassy carbon electrode (GCE) for the detection of hydroquinone in the presence of o‐hydroquinone and m‐hydroquinone. The electrochemical behavior of hydroquinone on the modified electrode was investigated with respect to different solution acidity, scan rate, and accumulation time. A pair of sharp and well‐defined peaks was obtained at 0.45 and 0.42 V [vs. a saturated calomel electrode (SCE)] at the PAO film–modified electrode. The potential difference between this pair of cathodic and anodic peaks was decreased to only 30 mV as compared to the 241 mV that was obtained on the bare glassy carbon electrode (GCE). As to o‐hydroquinone and m‐hydroquinone, their corresponding oxidation peaks appeared at 0.55 V and 0.89 V (vs. SCE), respectively. The oxidation potential differences between these three isomers enabled the separate detection of hydroquinone. Under the optimum experimental situation, the oxidation peak current of hydroquinone was proportional to the concentration at the range of 6.8×10?7–9.6×10?5 M. The detection limit was been estimated as 3×10?7 M with 130 s accumulation. This method was applied to the hydroquinone detection in tap water samples.  相似文献   

19.
The majority of protein spectroelectrochemical methods utilize a diffusing, chemical mediator to exchange electrons between the electrode and the protein. In such methods, electrochemical potential control is limited by mediator choice and its ability to interact with the protein of interest. We report an approach for unmediated, protein spectroelectrochemistry that overcomes this limitation by adsorbing protein directly to thiol self-assembled monolayer (SAM) modified, thin (10 nm), semitransparent gold. The viability of the method is demonstrated with two diverse and important redox proteins: cytochrome c and azurin. Fast, reversible electrochemical signals comparable to those previously reported for these proteins on ordinary disk gold electrodes were observed. Although the quantity of protein in a submonolayer adsorbed at an electrode is expected to be insufficient for detection of UV-vis absorption bands based on bulk extinction coefficients, excellent spectra were detected for each of the proteins in the adsorbed state. Furthermore, AFM imaging confirmed that only a single layer of protein was adsorbed to the electrode. We hypothesize that interaction of the relatively broad gold surface plasmon with the proteins' electronic transitions results in surface signal enhancement of the molecular transitions of between 8 and 112 times, allowing detection of the proteins at much lower than expected concentrations. Since many other proteins are known to interact with gold SAMs and the technical requirements for implementation of these experiments are simple, this approach is expected to be very generally applicable to exploring mechanisms of redox proteins and enzymes as well as development of sensors and other redox protein based applications.  相似文献   

20.
We describe the oxidation of L-cysteine (CySH) at a fluorosurfactant (i.e., Zonyl FSO)-modified gold electrode (FSO-Au). Significantly reduced anodic overpotential of CySH was observed. The FSO layer inhibited the adsorption of CySH and its oxidation products at the gold electrode surface, and the low coverage of the adsorbed thiol-containing species might account for the more facile electron-transfer kinetics of free CySH at low potentials. An electrochemical impedance spectroscopy study revealed the lower charge-transfer resistance of CySH oxidation at the FSO-Au electrode as compared to that at a bare gold electrode. Interestingly, although the FSO layer facilitated CySH oxidation, the anodic responses of other electroactive biological species such as glucose, uric acid, and ascorbic acid were generally suppressed. Furthermore, the modified electrode was capable of differentiating CySH from other low-molecular-mass biothiols such as homocysteine and glutathione. The unique features of the FSO-Au electrode allowed for the development of a highly selective method of detecting CySH in complex biological matrices. The direct determination of free reduced and total CySH in human urine samples has been successfully carried out without the assistance of any separation techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号