首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《Electroanalysis》2003,15(21):1693-1698
The voltammetric behaviors of uric acid (UA) and L ‐ascorbic acid (L ‐AA) were studied at well‐aligned carbon nanotube electrode. Compared to glassy carbon, carbon nanotube electrode catalyzes oxidation of UA and L ‐AA, reducing the overpotentials by about 0.028 V and 0.416 V, respectively. Based on its differential catalytic function toward the oxidation of UA and L ‐AA, the carbon nanotube electrode resolved the overlapping voltammetric response of UA and L ‐AA into two well‐defined voltammetric peaks in applying both cyclic voltammetry (CV) and differential pulse voltammetry (DPV), which can be used for a selective determination of UA in the presence of L ‐AA. The peak current obtained from DPV was linearly dependent on the UA concentration in the range of 0.2 μM to 80 μM with a correlation coefficient of 0.997. The detection limit (3δ) for UA was found to be 0.1 μM. Finally, the carbon nanotube electrode was successfully demonstrated as a electrochemical sensor to the determination of UA in human urine samples by simple dilution without further pretreatment.  相似文献   

2.
In this paper, a pre‐anodized carbon paste electrode (PACPE) is fabricated by a simple electrochemical pretreatment method, which can be used for the simultaneous determination of uric acid (UA) and ascorbic acid (AA). The influencing mechanism of the acidity on the size of oxidation peak current (ip,a) of UA and AA is discussed in detail. According to the results, in different pH conditions, the intensity of hydrogen bonding between UA, AA and the surface of PACPE, the degree of reduction reaction at the auxiliary electrode, and the structural configurations of UA and AA with different species in reaction system have evident influence on the size of oxidation peak current. In pH 7.00 phosphate buffer solution, the calibration curves for UA and AA are obtained in the range of 5.0 x 10‐7–5.0 x 10‐5 mol/L and 3.0 x 10‐5–5.0 x 10‐3 mol/L, respectively. The detection limits for UA and AA are found to be 2.0 x 10‐8 mol/L and 1.2 x 10‐6 mol/L, respectively. This proposed method has been successfully applied to determine UA and AA in human urine simultaneously with satisfactory results.  相似文献   

3.
Electrochemically polymerized luminol film on a glassy carbon electrode (GCE) surface has been used as a sensor for selective detection of uric acid (UA) in the presence of ascorbic acid (AA) and dopamine (DA). Cyclic voltammetry was used to evaluate the electrochemical properties of the poly(luminol) film modified electrode. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used for surface characterizations. The bare GCE failed to distinguish the oxidation peaks of AA, DA and UA in phosphate buffer solution (pH 7.0), while the poly(luminol) modified electrode could separate them efficiently. In differential pulse voltammetric (DPV) measurements, the modified GCE could separate AA and DA signals from UA, allowing the selective determination of UA. Using DPV, the linear range (3.0×10?5 to 1.0×10?3 M) and the detection limit (2.0×10?6 M) were estimated for measurement of UA in physiological condition. The applicability of the prepared electrode was demonstrated by measuring UA in human urine samples.  相似文献   

4.
Uric acid (UA) was determined in the presence of ascorbic acid (AA) by using a carbon paste electrode modified superficially by a β‐cyclodextrin film (CPE/β‐CD). The surface carbon paste electrode was prepared applying a 30 cycles potential program and using a 1 M HClO4+0.01 M β‐CD electrolytic solution. The UA and AA solutions were used to evaluate the electrode selectivity and sensitivity by cyclic voltammetric and amperometric methods. In these experiments the detection limit for UA was (4.6±0.01)×10?6 M and the RSD calculated from the amperometric curves was 10%. From the data obtained it was possible to quantify UA in the urine and saliva samples. Selective detection of UA was improved by formation of an inclusion complex between β‐CD and UA. The results show that the CPE/β‐CD is a good candidate due to its selectivity and sensitivity in the UA determination in complex samples like the biological fluids.  相似文献   

5.
In this paper, a silver doped poly(L ‐valine) (Ag‐PLV) modified glassy carbon electrode (GCE) was fabricated through electrochemical immobilization and was used to electrochemically detect uric acid (UA), dopamine (DA) and ascorbic acid (AA) by linear sweep voltammetry. In pH 4.0 PBS, at a scan rate of 100 mV/s, the modified electrode gave three separated oxidation peaks at 591 mV, 399 mV and 161 mV for UA, DA and AA, respectively. The peak potential differences were 238 mV and 192 mV. The electrochemical behaviors of them at the modified electrode were explored in detail with cyclic voltammetry. Under the optimum conditions, the linear ranges were 3.0×10?7 to 1.0×10?5 M for UA, 5.0×10?7 to 1.0×10?5 M for DA and 1.0×10?5 to 1.0×10?3 M for AA, respectively. The method was successfully applied for simultaneous determination of UA, DA and AA in human urine samples.  相似文献   

6.
通过在碳纳米管修饰玻碳电极表面电聚合的方法制备了聚对氨基苯磺酸/碳纳米管复合膜修饰电极(PABSA/CNT/GC),采用扫描电镜对电极形貌进行了表征。运用循环伏安法研究了尿酸(UA)和抗坏血酸(AA)在该修饰电极上的电化学行为,在pH7.0的PBS中,UA和AA分别在0.312、-0.025 V处产生灵敏氧化峰,与其在聚氨基苯磺酸和碳纳米管单层膜修饰电极上的电化学行为相比,两者的氧化峰电流显著增加,峰电位差(ΔEpa)达到337 mV,表明碳纳米管和聚合物产生协同增效作用,探讨了其作用机理。在优化实验条件下,建立了差分脉冲伏安法同时测定UA和AA的方法,UA、AA的线性范围分别为2.5×10-7~5.0×10-4、8.0×10-6~4.0×10-3mol/L,检出限分别为7.5×10-8、5.0×10-6mol/L。该方法用于尿样中UA和AA的测定,结果令人满意。  相似文献   

7.
The properties of graphite electrode (Gr) modified with poly(diallyl dimethyl ammonium chloride) (PDDA) for the detection of uric acid (UA) in the presence of dopamine (DA) and high concentration of ascorbic acid (AA) have been investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The polymer modified graphite electrode was prepared by a very simple method just by immersing the graphite electrode in PDDA solution for 20 minutes. The PDDA/Gr modified electrode displayed excellent electrocatalytic activity towards the oxidation of UA, DA and AA compared to that at the bare graphite electrode. The electrochemical oxidation signals of UA, DA and AA are well resolved into three distinct peaks with peak potential separations of 220 mV, 168 mV and 387 mV between AA‐DA, DA‐UA and AA‐UA respectively in cyclic voltammetry studies and the corresponding peak potential separations are 230 mV, 130 mV and 354 mV respectively in differential pulse voltammetry. The lowest detection limits obtained for UA, DA and AA were 1×10?7 M, 2×10?7 M and 800×10?9 M respectively. The PDDA/Gr electrode efficiently eliminated the interference of DA and a high concentration of AA in the determination of UA with good selectivity, sensitivity and reproducibility. The modified electrode was also successfully applied for simultaneous determination of UA, DA and AA in their ternary mixture.  相似文献   

8.
The voltammetric behavior of dopamine (DA) and uric acid (UA) on a gold electrode modified with self‐assembled monolayer (SAM) of cysteamine (CA) conjugated with functionalized multiwalled carbon nanotubes (MWCNTs) was investigated. The film modifier of functionalized SAM was characterized by means of scanning electron microscopy (SEM) and also, electrochemical impedance spectroscopy (EIS) using para‐hydroquinone (PHQ) as a redox probe. For the binary mixture of DA and UA, the voltammetric signals of these two compounds can be well separated from each other, allowing simultaneous determination of DA and UA. The effect of various experimental parameters on the voltammetric responses of DA and UA was investigated. The detection limit in differential pulse voltammetric determinations was obtained as 0.02 µM and 0.1 µM for DA and UA, respectively. The prepared modified electrode indicated a stable behavior and the presence of surface COOH groups of the functionalized MWCNT avoided the passivation of the electrode surface during the electrode processes. The proposed method was successfully applied for the determination of DA and UA in urine samples with satisfactory results. The response of the gold electrode modified with MWCNT‐functionalized SAM method toward DA, UA, and ascorbic acid (AA) oxidation was compared with the response of the modified electrode prepared by the direct casting of MWCNT.  相似文献   

9.
A novel chemically modified electrode was fabricated by immobilizing ordered mesoporous carbon (OMC) onto a glassy carbon (GC) electrode. The electrocatalytic behavior of the OMC modified electrode towards the oxidation of uric acid (UA) and ascorbic acid (AA) was studied. Compared to a glassy carbon electrode, the OMC modified electrode showed a faster electron transfer rate and reduced the overpotentials greatly. Furthermore, the OMC modified electrode resolved the overlapping voltammetric responses of UA and AA into two well‐defined voltammetric peaks with peak separation of ca. 0.38 V. All results show that the OMC modified electrode has a good electrocatalytic ability to UA and AA, and has an excellent response towards UA even in the presence of high concentration AA.  相似文献   

10.
Poly(pyridine‐3‐boronic acid) (PPBA)/multiwalled carbon nanotubes (MWCNTs) composite modified glassy carbon electrode (GCE) was used for the simultaneous determination of ascorbic acid (AA), 3,4‐dihydroxyphenylacetic acid (DOPAC) and uric acid (UA). The anodic peaks for AA, DOPAC and UA at the PPBA/MWCNTs/GCE were well resolved in phosphate buffer solution (pH 7.4). The electrooxidation of AA, DOPAC and UA in the mixture solution was investigated. The peak currents increase with their concentrations increasing. The detection limits (S/N=3) of AA, DOPAC and UA are 5 µM, 3 µM and 0.6 µM, respectively.  相似文献   

11.
Hybrid composites ZnO/PANI were facily synthesized by a sonication process at room temperature. This procedure is non-expensive, time/energy saving and environmentally safe. The as-prepared ZnO/PANI were characterized by FTIR, UV-vis spectroscopies and SEM in order to investigate the structure and morphology of the studied composites. The samples were used to modify carbon paste electrode (CPE) in order to develop electrochemical biosensors (ZnO/PANI/CPE). The sensing properties of the nanoparticles were evaluated for dopamine, ascorbic acid and uric acid non-enzymatic detection. The effect of percentage of polyaniline in the composites and the effect of calcination on the biosensor's response were also examined in the present study. It was revealed that the existence of PANI in ZnO/PANI/CPE largely enhanced the electroactive surface area and therefore the sensitivity for electrochemical sensing. A good electrochemical behavior was noted for ZnO/40 wt% PANI-cal/CPE modified electrode toward DA, AA and UA oxidation. The electroactive surface area of the previously mentioned modified electrode (0.235 cm2) was two times higher than that of the bare electrode (0.117 cm2). The liner relationships between current intensities and concentrations were found to be 0.01–1.4 mM, 0.1–1.3 mM and 0.01–0.12 mM, with detection limit of 0.029 mM, 0.063 mM and 0.007 mM, for DA, AA and UA respectively. In the mixtures of ascorbic acid (AA), dopamine (DA) uric acid (UA) and glucose (Glu) the sensor showed high selectivity of DA with low interference of ascorbic acid by a current change of 14 %. The as-prepared ZnO/PANI/CPE biosensor displayed a good reproducibility and stability.  相似文献   

12.
The electrochemical behaviors of uric acid (UA) at the penicillamine (Pen) self-assembled monolayers modified gold electrode (Pen/Au) have been studied. The Pen/Au electrode is demonstrated to promote the electrochemical response of UA by cyclic voltammetry (CV). The diffusion coefficient D of UA is 6.97 × 10−6 cm2 s−1. In differential pulse voltammetric (DPV) measurements, the Pen/Au electrode can separate the UA and ascorbic acid (AA) oxidation potentials by about 120 mV and can be used for the selective determination of UA in the presence of AA. The detection limit was 1 × 10−6 mol L−1. The modified electrode shows excellent sensitivity, good selectivity and antifouling properties.  相似文献   

13.
A composition of multiwalled carbon nanotube (MWCNT), Nafion and cobalt(II)‐5‐nitrosalophen (CoNSal) is applied for the modification of carbon‐paste electrode (CPE). The pretreated MWCNT is well dispersed in the alcoholic solution of Nafion under the ultrasonic agitation, and the resulted suspension is used as modifier (with 10% w/w) in the matrix of the paste electrode. The prepared electrode further modified by addition of 3 wt% of CoNSal. The resulted modified electrode is used as a sensitive voltammetric sensor for simultaneous determination of uric acid (UA) and ascorbic acid (AA). The electrode showed efficient electrocatalytic activity in lowering the anodic overpotentials and enhancement of the anodic currents. This electrode is able to completely resolve the voltammetric response of UA and AA. The effects of potential sweep rate and pH of the buffer solution on the response of the electrode, toward UA and AA, and the peak resolution is thoroughly investigated by cyclic and differential pulse voltammetry (CV and DPV). The best peak resolution for these compounds using the modified electrode is obtained in solutions with pH 4. The ΔEp for UA and AA in these methods is about 315 mV, which is considerably better than previous reports for these compounds. A linear dynamic range of 1×10?7 to 1×10?4 M with a detection limit of 6×10?8 M is resulted for UA in buffered solutions with pH 4.0. The voltammetric response characteristics for AA are obtained as, the linear range of 5×10?7 to 1×10?4 M with the detection limit of 1×10?7 M. The voltammetric detection system was very stable and the reproducibility of the electrode response, based on the six measurements during one month, was less than 3.5% for the slope of the calibration curves of UA and AA. The prepared modified electrode is successfully applied for the determination of AA and UA in mixture samples and reasonable accuracies are resulted.  相似文献   

14.
《Electroanalysis》2004,16(20):1734-1738
A novel biosensor by electrochemical codeposited Pt‐Fe(III) nanocomposites and DNA film was constructed and applied to the detection of uric acid (UA) in the presence of high concentration of ascorbic acid (AA). Based on its strong catalytic activity toward the oxidation of UA and AA, the modified electrode resolved the overlapping voltammetric response of UA and AA into two well‐defined peaks with a large anodic peak difference (ΔEpa) of about 380mV. The catalytic peak current obtained from differential pulse voltammetry (DPV) was linearly dependent on the UA concentration from 3.8×10?6 to 1.6×10?4 M (r=0.9967) with coexistence of 5.0×10?4 M AA. The detection limit was 1.8×10?6 M (S/N=3) and the presence of 20 times higher concentration of AA did not interfere with the determination. The modified electrode shows good sensitivity, selectivity and stability.  相似文献   

15.
《Electroanalysis》2006,18(24):2458-2466
A promising electrochemical biosensor was fabricated by electrochemical grafting of ribonucleic acid (RNA) at 1.8 V (vs. SCE) on glassy carbon electrode (GCE) (denoted as RNA/GCE), for simultaneous detection of dopamine (DA) and uric acid (UA) with coexistence of excess amount of ascorbic acid (AA). The electrode was characterized by X‐ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The RNA modified layer on GCE exhibited superior catalytic ability and anionic exclusive ability in comparison with the DNA modified electrode. Three separated anodic DPV peaks were obtained at 0.312, 0.168 and ?0.016 V for UA, DA and AA, respectively, at the RNA/GCE in pH 7.0 PBS. In the presence of 2.0 mM AA, a linear range of 0.37 to 36 μM with a detection limit of 0.2 μM for DA, and in the range of 0.74 to 73 μM with a detection limit of 0.36 μM for UA were obtained. The co‐existence of 5000 fold AA did not interfere with the detection of DA or UA. The modified electrode shows excellent selectivity, good sensitivity and good stability.  相似文献   

16.
《Electroanalysis》2006,18(9):918-927
Uric acid (UA) sensor based on molecularly imprinted polymer‐modified hanging mercury drop electrode was developed for sensitive and selective analysis in aqueous and blood serum samples. The uric acid‐imprinted polymer was prepared from melamine and chloranil and coated directly onto the surface of a hanging mercury drop electrode, under charge‐transfer interactions at +0.4 V (vs. Ag/AgCl), in model 303A electrode system connected with a polarographic analyzer/stripping voltammeter (PAR model 264A). The binding event of uric acid was detected in the imprinted polymer layer through differential pulse, cathodic stripping voltammetry (DPCSV) at optimized operational conditions [accumulation potential +0.4 V (vs. Ag/AgCl), accumulation time 120 s, pH 7.0, scan rate 10 mV s?1, pulse amplitude 25 mV]. The limit of detection for UA was found to be 0.024 μg mL?1 (RSD=0.64%, S/N=3). Under the optimized operational conditions, the sensor was able to differentiate between uric acid and other closely structural‐related compounds and interfering substances. Ascorbic acid (AA), a major interferent in UA estimation, was not adsorbed on the surface of sensor electrode. The present sensor is, therefore, UA‐selective at all concentrations of AA present in human blood serum samples. The précised and accurate quantification of UA have been made in the dilute as well as concentrated regions varying within limits 0.1–4.0 and 9.8–137.0 μg mL?1, respectively.  相似文献   

17.
《Electroanalysis》2004,16(23):1977-1983
2,2‐bis(3‐Amino‐4‐hydroxyphenyl)hexafluoropropane (BAHHFP) was electro‐polymerized oxidatively on glassy carbon by cyclic voltammetry. The activity of the modified electrode towards ascorbic acid (AA), uric acid (UA) and dopamine (DA) was characterized with cyclic voltammetry and differential puls voltammetry (DPV). The findings showed that the electrode modification drastically suppresses the response of AA and shifts it towards more negative potentials. Simultaneously an enhancement of reaction reversibility is seen for DA and UA. Unusual, selective preconcentration features are observed for DA when the polymer‐modified electrode is polarized at negative potential. In a ternary mixture containing the three analytes studied, three baseline resolved peaks are observed in DPV mode. At physiological pH 7.4, after 5 min preconcentration at ?300 mV, peaks positions were ?0.073, 0.131 and 0.280 V (vs. Ag/AgCl) for AA, DA and UA, respectively. Relative selectivities DA/AA and UA/AA were over 4000 : 1 and 700 : 1, respectively. DA response was linear in the range 0.05–3 μM with sensitivity of 138 μA μM?1 cm?2 and detection limit (3σ) of 5 nM. Sensitive quantification of UA was possible in acidic solution (pH 1.8). Under such conditions a very sharp peak appeared at 630 mV (DPV). The response was linear in the range 0.5–100 μM with sensitivity of 4.67 μA μM?1 cm?2 and detection limit (3σ) of 0.1 μM. Practical utility was illustrated by selective determination of UA in human urine.  相似文献   

18.
In this paper, graphene-multiwall carbon nanotube-gold nanocluster (GP-MWCNT-AuNC) composites were synthesized and used as modifier to fabricate a sensor for simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The electrochemical behavior of the sensor was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The combination of GP, MWCNTs, and AuNCs endowed the electrode with a large surface area, good catalytic activity, and high selectivity and sensitivity. The linear response range for simultaneous detection of AA, DA, and UA at the sensor were 120–1,701, 2–213, and 0.7–88.3 μM, correspondingly, and the detection limits were 40, 0.67, and 0.23 μM (S/N?=?3), respectively. The proposed method offers a promise for simple, rapid, selective, and cost-effective analysis of small biomolecules.  相似文献   

19.
Dopamine (DA) is a significant neurotransmitter in the central nervous system, coexisting with uric acid (UA) and ascorbic acid (AA). UA and AA are easily oxidizable compounds having potentials close to that of DA for electrochemical analysis, resulting in overlapping voltammetric response. In this work, a novel molecularly imprinted (MI) electrochemical sensor was proposed for selective determination of DA (in the presence of up to 80‐fold excess of UA and AA), relying on gold nanoparticles (Aunano)‐decorated glassy carbon (GC) electrode coated with poly(carbazole (Cz)‐co‐aniline (ANI)) copolymer film incorporating DA as template (DA imprinted‐GC/P(Cz‐co‐ANI)‐Aunano electrode, DA‐MIP‐Aunano electrode). The DA recognizing sensor electrode showed great electroactivity for analyte oxidation in 0.2 mol L?1 pH 7 phosphate buffer. Square wave voltammetry (SWV) was performed within 10?4–10?5 mol L?1 of DA, of which the oxidation peak potential was observed at 0.16 V. The limit of detection (LOD) and limit of quantification (LOQ) were 2.0×10?6 and 6.7×10?6 mol L?1, respectively. Binary and ternary synthetic mixtures of DA‐UA, DA‐AA and DA‐UA‐AA yielded excellent recoveries for DA. Additionally, DA was quantitatively recovered from a real sample of bovine serum spiked with DA, and determined in concentrated dopamine injection solution. The developed SWV method was statistically validated against a literature potentiodynamic method using a caffeic acid modified‐GC electrode.  相似文献   

20.
《Analytical letters》2012,45(1):22-33
A three-dimensional L-cysteine (L-cys) monolayer assembled on gold nanoparticles (GNP) providing simultaneous detection of uric acid (UA) and ascorbic acid (AA) was studied in this work. The cyclic voltammetry demonstrated that, at a bare glassy carbon electrode (GCE) or planar gold electrode, the mixture of UA and AA showed one overlapped oxidation peak; whereas when the electrode was modified with GNP, the oxidation peaks for UA and AA were separated. While a GNP modified electrode was further modified with L-cys monolayer (L-cys/GNP/GCE), namely, three-dimensional L-cys monolayer, a better separation for UA and AA response was obtained. Interestingly, the L-cys monolayer-modified planar gold electrode presented a block effect on the oxidation of AA, which was facilitated by the three-dimensional L-cys monolayer attributed to its distinct structure. The pH of solution presented a noticeable effect on the separation of UA and AA at GNP modified electrodes with or without L-cys monolayer. Wide concentration ranges from 2 × 10?6?1 × 10?3 M to UA and 2 × 10?6?8 × 10?4 M to AA could be obtained at L-cys/GNP/GCE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号