首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Miniaturized planar back‐side contact transducers (BSC) with chemically modified gold surface have been utilized as electrochemical sensors. The electrodes have been functionalized by sequential immobilization of aryl diazonium salts or alkanethiols and short peptide Gly‐Gly‐His. The applicability of gold substrates modified with aryl diazonium salts in voltammetric detection of copper(II) ions in aqueous solutions has been studied. The combination of two fundamental elements of the solid‐state electrode, i.e. back‐side contact (BSC) gold sensor and self‐assembled monolayers, allowed one to obtain reliable miniaturized copper(II) ion sensors. It can have important future applications in environmental sensing or in implantable biodevices.  相似文献   

2.
A new sensor based on the grafting of 4‐tert‐butylcatechol on the surface of a glassy carbon electrode (GC) was developed for the catalytic oxidation of homocysteine ( Hcy ). The GC‐modified electrode exhibited a reversible redox response at neutral pH. Under the optimum conditions cyclic voltammetric results indicated the excellent electrocatalytic activity of modified electrode toward the oxidation of Hcy at reduced over‐potential about 350 mV. A linear dynamic range of 0.01–3.0 mM and a detection limit of 1.0 µM were obtained for Hcy . The modified electrode was used as an electrochemical sensor for selective determination of Hcy in human blood.  相似文献   

3.
《Electroanalysis》2004,16(9):736-740
A new enzyme‐based amperometric biosensor for hydrogen peroxide was developed relying on the efficient immobilization of horseradish peroxidase (HRP) to a nano‐scaled particulate gold (nano‐Au) film modified glassy carbon electrode (GC). The nano‐Au film was obtained by a chitosan film which was first formed on the surface of GC. The high affinity of chitosan for nano‐Au associated with its amino groups resulted in the formation of nano‐Au film on the surface of GC. The film formed served as an intermediator to retain high efficient and stable immobilization of the enzyme. H2O2 was detected using hydroquinone as an electron mediator to transfer electrons between the electrode and HRP. The HRP immobilized on nano‐Au film maintained excellent electrocatalytical activity to the reduction of H2O2. The experimental parameters such as the operating potential of the working electrode, mediator concentration and pH of background electrolyte were optimized for best analytical performance of amperometry. The linear range of detection for H2O2 is from 6.1×10?6 to 1.8×10?3 mol L?1 with a detection limit of 6.1 μmol L?1 based on signal/noise=3. The proposed HRP enzyme sensor has the features of high sensitivity (0.25 Almol?1cm?2), fast response time (t90%≤10 s) and a long‐term stability (>1 month). As an extension, glucose oxidase (GOD) was chemically bound to HRP‐modified electrode. A GOD/HRP bienzyme‐modified electrode formed in this way can be applied to the determination of glucose with satisfactory performance.  相似文献   

4.
《Electroanalysis》2018,30(8):1837-1846
This study reports a highly sensitive electrochemical sensor based on Bi film modified glassy carbon electrode (BiF/GCE) for total determination and speciation trace concentrations of copper(II) ions in environmental water samples. Square wave‐adsorptive anodic stripping voltammetric (SW‐ASV) experiment was performed for monitoring selective accumulation of copper(II) with reagent 3‐[(2‐mercapto‐vinyl)‐hydrazono]‐1,3‐dihydro‐indol‐2‐one (MHDI) at pH 9–10. The mechanism of the electrode reaction of Cu2+‐MHDI complex was safely assigned. The sensor exhibited a wide linear range (3.22×10−9–2.0×10−7 mol L−1) with lower limits of detection (LOD) and quantitation (LOQ) of 9.6×1−10 and 3.22×10−9 mol L−1, respectively (R2=0.9993). The proposed sensor exhibited interference from active metal ions e. g. Cd, Hg. The performance of the proposed method was compared successfully with most of the reported methods and comparable efficiencies were obtained. The analytical utility of the proposed SW‐ASV method has been successfully validated for trace analysis of copper(II) in environmental water samples. The method offers a precise, accurate approach with good reproducibility, robustness, ruggedness, and cost effectiveness.  相似文献   

5.
3‐Aminophenylcalix[4]pyrrole (3APCP) was grafted to a glassy carbon (GC) surface during the electrochemical oxidation process in 0.1 M tetrabutylammoniumtetra‐fluoroborate (TBATFB) containing acetonitrile solution. The presence of a surface film was confirmed electrochemically by comparing voltammograms of dopamine and ferricyanide redox probes at the bare and modified electrodes. Reflection‐absorption infrared spectroscopy (RAIRS), XPS, atomic force microscopy (AFM), ellipsometry and the contact angle measurements were also employed to characterize 3APCP film on GC electrode. RAIRS analysis revealed that calix[4]pyrrole was bonded to the glassy carbon surface via the etheric linkage. The stability of the modified GC electrode was also studied. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
《Electroanalysis》2017,29(8):1887-1893
A sensitive anthracene (AN) sensor was developed with a gold electrode modified with a dendritic star‐copolymer film by in situ electrochemical co‐polymerization of generation 3 propylenethiophenoimine and 3‐hexylthiophene. The sensor's {Au/G3PPT‐co‐P3HT: i. e. gold‐generation 3 poly(propylenethiophenoimine)‐co‐poly(3‐hexylthiophene)} analytical response for anthracene was obtained by phase selective alternating current voltammetric (PSACV) signal transduction. An in‐phase angle of 0° yielded the most sensitive stripping signal and produced the best discrimination between the Faradaic and capacitive currents. The PSACV sensor exhibited a linear range (LR) of 3.48–56.4 nmol/L AN and a limit of detection (LOD) of 2.62 nmol/L AN. The LOD is comparable to the value of 4.4 nmol/L AN reported for glassy carbon electrode modified with graphenated polyaniline sensor. The low LOD value suggests that the AN sensor has promise for monitoring compliance to World Health Organisation (WHO) approved limit for polyaromatic hydrocarbons (PAHs) in wastewater (3.93 nmol/L). The Au/G3PPT‐co‐P3HT sensor is not as sensitive as gas chromatography coupled to tandem mass spectrometry (GC‐MS/MS) and reversed‐phase high performance liquid chromatography (RP‐HPLC) methods. However, the advantage of the PSACV signalling protocol is that real sample test results indicate that the sensor can be used for the determination of AN in oil‐polluted wastewater.  相似文献   

7.
《Electroanalysis》2004,16(5):379-385
All‐solid‐state chloride sensors were prepared by incorporation of trihexadecyl‐methylammonium chloride (THMACl) as an ion‐exchanger salt into a conjugated polymer membrane, poly(3‐octylthiophene) (POT). The influence of additional membrane components, such as a lipophilic anion, (potassium tetrakis[3,5‐bis(trifluoromethyl)phenyl] borate), poly(vinyl chloride) (PVC) or a plasticizer, (2‐nitrophenyl octyl ether) were studied. The membrane components were dissolved in chloroform except for PVC, which was dissolved in tetrahydrofuran (THF). The membrane solution was deposited on glassy carbon (GC) by solution casting resulting in all‐solid‐state chloride sensors. The sensor characteristics were determined potentiometrically and with impedance spectroscopy. The addition of plasticizer was found to be crucial in obtaining a well functioning Cl?‐ISE based on POT and THMACl.  相似文献   

8.
This work describes the characterization of the grafted 2‐benzo[c]cinnoline (2BCC) molecules at a glassy carbon (GC) electrode surface by voltammetry and spectroscopy. Attachment of the molecule to the carbon substrate was achieved by the electrochemical reduction of 2‐benzo[c]cinnoline diazonium salt (2BCC‐DAS). GC electrode modification was carried out in aprotic solution with 2BCC diazonium salt. Dopamine (DA) and ascorbic acid (AA) were used to prove the surface modification to see the blockage of the electron transfer. The presence of 2BCC at the GC electrode surface was characterized by cyclic voltammetry and Raman spectroscopy. Raman spectroscopy was used to monitor molecular bound properties of the adsorbates at the 2BCC‐GC surface and confirm the attachment of 2BCC molecules onto the GC surface. The thickness of the 2BCC film on GC was also investigated by ellipsometric measurement.  相似文献   

9.
Copper complex dye (C.I. Direct Blue 200) film modified electrodes have been prepared by multiple scan cyclic voltammetry. The effect of solution pH and nature of electrode material on film formation was investigated. The optimum pH for copper complex film formation on glassy carbon was found to be 1.5. The mechanism of film formation on ITO seems to be similar to that on GC surface but completely different mechanism followed with gold electrode. Cyclic voltammetric features of our modified electrodes are in consistent with a surface‐confined redox process. The voltammetric response of modified electrode was found to be depending on pH of the contacting solution. UV‐visible spectra show that the nature of copper complex dye is identical in both solution phase and after forming film on electrode. The electrocatalytic behavior of copper complex dye film modified electrode towards oxidation of dopamine, ascorbic acid and reduction of SO52? was investigated. The oxidation of dopamine and ascorbic acid occurred at less positive potential on film electrode compared to bare glassy carbon electrode. Feasibility of utilizing our modified electrode in analytical estimation of dopamine, ascorbic acid was also demonstrated.  相似文献   

10.
A novel Prussian blue/copper‐gold bimetallic nanoparticles hybrid film modified electrode was prepared by electrochemical deposition on a glassy carbon electrode (PB/Cu‐AuNPs/GCE). Morphology and electrochemistry of this electrode were studied by UV‐vis spectroscopy, scanning electron microscopy, X‐ray diffraction, cyclic voltammetry and electrochemical impedance spectroscopy. The sensor showed significantly better electrocatalytic activity for the reduction of hydrogen peroxide in comparison with the single PB/GCE and PB/AuNPs/GCE. This was attributed to the synergistic effect of PB and Cu‐Au bimetallic nanoparticles. Also, the sensor demonstrated an overall high level of performance for the analysis of H2O2 in the concentration range from 0.002 to 0.84 mM.  相似文献   

11.
《Electroanalysis》2018,30(8):1811-1819
Novel copper‐palladium nanoparticles modified glassy carbon electrodes (Cu−Pd/GC) with enhanced nonenzymatic sensing for glucose were facilely prepared by one‐step electrodeposition. The structure and composition of the prepared nanoparticles were characterized by XRD, SEM, TEM and EDS, respectively. The electrode modified process was characterized by electrochemical impedance spectroscopy. Cyclic voltammetry and chronoamperometric experiments were used to evaluate the electrocatalytic activities of the electrodes toward glucose. The surface morphology and the electrocatalytic activities of Cu−Pd/GC was compared to Pd and Cu nanoparticles modified glassy carbon electrodes (Pd/GC and Cu/GC), respectively. Thanks to homogeneous distribution of Cu−Pd nanoparticles and the synergistic effect of Cu and Pd atoms, Cu−Pd/GC exhibited the highest sensitivity (298 μA mM−1 cm−2) and the widest linear amperometric response (0.01 mM to 9.6 mM, R2=0.996) toward glucose compared to Pd/GC and Cu/GC. The detection limit of Cu−Pd/GC was 0.32 μM (S/N=3). In addition, the as‐prepared Cu−Pd/GC glucose sensor also exhibited exceptional capabilities of anti‐interference, reproducibility and long‐term stability. The as‐prepared sensor was also evaluated for determination of glucose concentration in human blood serum samples, which exhibited high reliability and accuracy, having great potential in clinical application.  相似文献   

12.
Glassy carbon (GC) modified electrodes were obtained by cycling the potential in an 8‐hydroxyquinoline‐5‐sulphonic acid (HQSA) solution. These electrodes were successfully tested as sensors of some species of alimentary and pharmaceutical interest, showing improved performances with respect to those of unmodified GC electrodes and of GC electrodes cycled under the same experimental conditions but in the absence of HQSA. As a matter of fact, in the wide potential range explored for modifying the electrodes, even in the absence of HQSA, complex redox processes leading to the production of several functional groups take place at the surface of glassy carbon itself. An XPS investigation was consequently performed to better understand the effective nature of active species present on the surface of HQSA modified electrodes. The spectroscopic experiments involved acquiring survey and detailed scans of an HQSA powder standard sample and of GC electrodes cycled both in the presence and in the absence of HQSA. The experimental value of the binding energy of the S2p3/2 level of HQSA‐modified electrodes was found equal to that of the HQSA standard powder, thus confirming that HQSA molecules are adsorbed on the surface of the GC/HQSA electrodes and that they maintain their chemical structure and properties. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
《Electroanalysis》2005,17(24):2231-2238
Square‐wave voltammetric detection of dopamine was studied at a copper (Cu)‐(3‐mercaptopropyl) trimethoxy silane (MPS)‐complex modified electrode (Cu‐MPS). The modification of the electrode was based on the attachment of MPS onto an electrochemically activated glassy carbon electrode (GCE) by the interaction between methoxy silane groups of MPS and surface hydroxyl groups and followed by the complexation of copper with the thiol groups of MPS. The surface of the modified electrode was further coated by a thin layer of Nafion film. The surface of the Nafion coated MPS‐Cu complex modified electrode (Nafion/Cu‐MPS) was characterized using cyclic voltammetry, electrochemical quartz crystal microbalance (EQCM), scanning electron microscope (SEM), X‐ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT‐IR) spectrometry. The modified electrode exhibited an excellent electrocatalytic activity towards the oxidation of dopamine, which was oxidized at a reduced potential of +0.35 V (vs. Ag/AgCl) at a wider pH range. Various experimental parameters, such as the amount of copper, the pH, and the temperature were optimized. A linear calibration plot was obtained in the concentration range between 8.0×10?8 M and 5.0×10?6 M and the detection limit was determined to be 5.0×10?8 M. The other common biological compounds including ascorbic acid did not interfere and the modified electrode showed an excellent specificity to the detection of dopamine. The Nafion/Cu‐MPS modified electrode can be used for about 2 months without any significant loss in sensitivity.  相似文献   

14.
Preparation and characterization of electrodes suitable for determination of glutathione is reported in this study. For this poly‐m‐aminophenol (PmAP), poly‐o‐aminophenol, and poly‐p‐aminophenol were electrochemically deposited from aqueous solution on the surface of glassy carbon (GC) electrode by potential cycling in the range of +0.2–+1.0 V. The modified GC electrodes were characterized by cyclic voltammetry, electrochemical impedance spectroscopy, contact angle measurement and ellipsometry. It was found that poly‐m‐aminophenol modified GC electrode (PmAP/GC‐electrode) is most suitable for electroanalytical determination of glutathione. An electroanalytical system for the determination of glutathione based on the PmAP/GC‐electrode was developed. The analytical system was characterized by low limit of detection, good stability, high sensitivity and wide linear detection range.  相似文献   

15.
A promising electrochemical sensor based nickel‐carbon nanotube (Ni‐CNT) modified on glassy carbon (GC) electrode had been developed and the properties of the modified electrode were characterized by multispectroscopic analysis. The fabricated sensor (GC/Ni‐CNT) electrode was utilized to determine the catecholamines such as epinephrine and dopamine simultaneously. Differential pulse voltammetry and amperometry were used to verify the electrochemical behavior of the studied compounds. The GC/Ni‐CNT based amperometric sensor showed a wide linear range and low detection limit with high analytical sensitivity of 8.31 and 6.61 μA μM?1 for EP and DA, respectively which demonstrates better characteristics compared to other electrodes reported in the literature. Further, no significant change in amperometric current response was observed in presence of biological interference species such as glucose, cysteine, citric acid, uric acid and ascorbic acid in the detection of EP and DA. The utility of this GC/Ni‐CNT electrode was well established for the determination of EP and DA in human urine samples.  相似文献   

16.
《Electroanalysis》2005,17(1):85-88
An amperometric sensor to phenolic compound was successfully constructed by immobilizing tyrosinase on the SWNTs modified glassy carbon (GC) electrode, which was covered with Nafion film. The sensitivity of the tyrosinase‐SWNTs sensor to phenol was 155 μA/mM. The tyrosinase‐SWNTs sensor also had good response to catechol, p‐chlorophenol and m‐cresol. Furthermore, benzoic acid could be detected based on the inhibition to tyrosinase activity.  相似文献   

17.
The nanocomposite (denoted as GR‐AuNPs‐CD‐CS) of graphene (GR), gold nanoparticles (AuNPs), chitosan (CS) and β‐cyclodextrin (β‐CD) was prepared to modify a glassy carbon electrode. The as‐modified electrode was explored for the ultrasensitive detection of dopamine (DA) and uric acid (UA). The modified electrode demonstrated linearly increased current response in the concentration range of 0.1–120 µm for DA and 0.05–70 µm for UA, with so far the best detection limit for DA and UA. Good stability and repeatability were further demonstrated for the as‐made sensor.  相似文献   

18.
《Electroanalysis》2017,29(9):2090-2097
Lignosulfonate‐stabilized gold nanoparticles (AuNPs‐LS) were synthesized and subsequently used as a complexing agent for mercury ions. The obtained AuNPs‐LS/Hg2+ complex was characterized by means of various physicochemical techniques such as UV‐vis spectroscopy, transmission electron microscopy and cyclic voltammetry. Furthermore, the resulting complex was evaluated as an electrode modifier for the development of amperometric sensors. Upon sufficient negative potential, the bound mercury ions are reduced to form an amalgam with AuNPs‐LS. Thus, the performance of glassy carbon electrode (GCE) modified by AuNPs‐LS/Hg film was investigated as an electrochemical sensor in the determination of Tl+ ions in a 0.05 M EDTA at pH 4.5. The presence of the mercury containing film improves the analyte accumulation due to its ability to form a fused amalgam with thallium. The presented data indicate that the GCE/AuNPs‐LS/Hg modified electrode shows better performance toward Tl+ determination in comparison to bare GCE. The stripping anodic peak current of thallium was linear over its concentration range from 1.7⋅10−7 to 5.0⋅10−6 M. The detection limit (3σ) was estimated to be 1.4⋅10−7 M. The proposed method was successfully applied for the determination of thallium ions in real samples of soil derived from the area of the copper smelter near Głogów (Poland).  相似文献   

19.
《Electroanalysis》2018,30(5):803-809
An electrode modified with ZnS and gold nanoparticles (Au‐ZnS NPs) is introduced for highly sensitive voltammetric determination of ganciclovir (GCV). Surface structure and topography of the modified electrode was studied by SEM, EDX and XRD techniques. Electrochemical oxidation of GCV was investigated by cyclic (CV) and square wave voltammetry (SWV) in Briton‐Robinson buffer solution (pH 1.5). The results showed that electrochemical oxidation of GCV at the Au‐ZnS modified glassy carbon electrode (GCE) is irreversible and exhibited diffusion controlled electrode process over the pH range from 1.0 to 6.0. The oxidation potential peak and pH relationship showed that electrons and protons were transferred simultaneously over the electrochemical oxidation process. Using the proposed sensor, the linear calibration curves were obtained in the ranges of 0.04–1.50 μM and 1.5–70.0 μM with detection limit of 0.01 μM GCV by SWV technique. The modified electrode was successfully applied as a sensitive, reproducible and repeatable sensor for determination of the trace amount of GCV in human serum, urine and cymevene vials. Reasonable results were obtained from comparing the measurements of the real samples by the new sensor to high performance liquid chromatography (HPLC) as a standard method.  相似文献   

20.
《中国化学会会志》2018,65(6):743-749
A glassy carbon electrode (GCE) modified with a copper‐based metal‐organic framework (MOF) [HKUST‐1, HKUST‐1 = Cu3(BTC)2 (BTC = 1,3,5‐benzenetricarboxylicacid)] was developed as a highly sensitive and simple electrochemical sensor for the determination of dopamine (DA). The MOF was prepared by a hydrothermal process, and the morphology and crystal phase of the MOF were characterized by scanning electron microscopy (SEM) and X‐ray diffraction (XRD), respectively. Meanwhile, the electrochemical performance was investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Under optimized conditions, the modified electrode showed excellent electrocatalytic activity and high selectivity toward DA. The linear response range was from 5.0 × 10−7 to 1.0 × 10−4 M and the detection limit was as low as 1.5 × 10−7 M. Moreover, the electrochemical sensor was used to detect DA in real samples with excellent results. MOF‐based sensors hold great promise for routine sensing applications in the field of electrochemical sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号