首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A super-modified simplex (SMS) method has been used to optimize the mobile phase used for separation of seven water-soluble vitamins in multivitamin tablets by gradient micellar liquid chromatography (MLC) with ultraviolet (UV) detection at 254, 295, and 361 nm. Effect of column temperature and addition of organic modifier to the mobile phase on separation efficiency were investigated: the appropriate conditions used were a temperature of 35 degrees C and 1-butanol modifier. The sodium dodecyl sulfate (SDS) concentration, pH, and 1-butanol% in the mobile phase were chosen for simultaneous optimization using the SMS method. The optimum mobile phase was found to be 16 mmol L(-1) (mM) SDS, 0.02 M phosphate buffer, pH 3.6, and a gradient of 3.5-10% (v/v) butanol. The total analysis time for vitamins was 75 min. The analytical parameters including linearity ( r>0.9970), limit of detection (0.12-50 micro g mL(-1)), precision of method (relative standard deviation (RSD) <8.90%), and accuracy obtained by the recovery assay (88-103%) support the usefulness of the proposed method for the determination of the water-soluble vitamins.  相似文献   

2.
高效液相色谱-荧光检测法测定血浆中总同型半胱氨酸   总被引:20,自引:0,他引:20  
廖瑛  梁奕铨  智喜梅  廖志红 《色谱》2000,18(1):49-51
 建立了测定血浆中总同型半胱氨酸的柱前衍生、高效液相色谱-荧光检测的分析方法。以Br omobimane作荧光剂,对巯基进行衍生。同型半胱氨酸的最低检测浓度为0.5 μmol/L,线性 浓度范围是2.5~80.0 μmol/L,回收率为94.0%~112.0%,批内、批间相对标准偏差都小于5. 6%。 关键词:  相似文献   

3.
A highly sensitive spectrofluorometric method was developed for the determination of verapamil hydrochloride (VP HCl) in pharmaceutical formulations and biological fluids. The proposed method is based on investigation of the fluorescence spectral behavior of VP HCl in micellar systems, such as sodium dodecyl sulfate (SDS) and beta-cyclodextrin (beta-CD). In aqueous solutions of borate buffer of pH 9 and 8.5, VP HCI was well incorporated into SDS and beta-CD, respectively, with enhancement of its native fluorescence. The fluorescence was measured at 318 nm after excitation at 231 nm. The fluorescence intensity enhancements were 183 and 107% in SDS and in beta-CD, respectively. The fluorescence-concentration plots were rectilinear over the range of 0.02-0.2 and 0.02-0.25 microg/mL, with lower detection limits of 5.58 x 10(-3) and 3.62 x 10(-3) microg/mL in SDS and beta-CD, respectively. The method was successfully applied to the analysis of commercial tablets and the results were in good agreement with those obtained with the official method. The method was further applied to the determination of VP HCl in real and spiked human plasma. The mean % recoveries in the case of spiked human plasma (n=4) was 92.59 +/- 3.11 and 88.35 +/- 2.55 using SDS and beta-CD, respectively, while that in real human plasma (n=3) was 90.17 +/- 6.93 and 89.17 +/- 6.50 using SDS and beta-CD, respectively. The application of the method was extended to the stability studies of VP HCl after exposure to ultraviolet radiation and upon oxidation with hydrogen peroxide.  相似文献   

4.
周建忠  廖杰  钱小红  董芳霆 《色谱》1997,15(2):159-160
建立了用毛细管胶束电动色谱法(MEKC)分离19种PTH氨基酸的方法,并探讨了电压、pH值、温度、胶束浓度对氨基酸迁移时间的影响。方法具有速度快、灵敏度高、样品用量少的优点。  相似文献   

5.
Chiang HY  Sheu SJ 《Electrophoresis》2004,25(4-5):670-676
Two stacking methods of capillary electrophoresis (CE) were developed for the separation of very dilute solutions of ephedra-alkaloids, namely ephedrine, pseudoephedrine, methylephedrine, methylpseudoephedrine, norephedrine, and norpseudoephedrine. A sweeping method which uses a carrier comprised of phosphoric acid, sodium dodecyl sulfate (SDS), diethylamine and acetonitrile permits the detection of the alkaloids down to the 10(-1) microg/mL level, and the cation-selective exhaustive injection and sweeping micellar electrokinetic chromatography (CSEI-Sweep-MEKC) method using phosphoric acid, SDS, and acetronitrile as electrolytes can detect down to the 10(-3) microg/mL level. The former requires the conductance of the sample solution to be adjusted beforehand, and only five peaks were observed, two of which were overlapped. The latter is capable of separating the six alkaloids but has a somewhat poorer reproducibility. Using an optimized injection time, it was found that the more diluted a solution is, the greater the sweeping effect will be. The CSEI-Sweep-MEKC method with a 600 s injection time and a 10(-1) microg/mL solution concentration provides an amplification effect of approximately 10(4). The method is suitable for analyses of dilute herb drug extracts and mouse sera. The effect of buffers on the separation and validation of the methods in this study are also discussed.  相似文献   

6.
A high-performance liquid chromatographic method with UV detection has been developed for the determination of saikosaponin a in rat plasma. Saikosaponin a and internal standard jujuboside A were isolated from plasma samples by solid-phase extraction. The chromatographic separation was achieved on a reversed-phase C(18) column with the mobile phase of acetonitrile-water (35:65, v/v) at a flow rate of 1 mL/min and UV detection was set at 205 nm. The standard curve for saikosaponin a was linear over the concentration range 0.25-10 microg/mL and the limit of detection was 0.05 microg/mL. The absolute recovery was greater than 82%. The precision and accuracy ranged from 3.05 to 9.59% and 95.61 to 110.00%, respectively. The validated method was used to determine saikosaponin a in plasma samples in a pharmacokinetic study of saikosaponin a administered to Sprague-Dawley rats.  相似文献   

7.
A new chromogenic reagent, 2-(2-quinolylazo)-5-diethylaminophenol (QADEAP) was synthesized. A highly sensitive, selective and rapid method for the determination of silver based on the rapid reaction of silver(I) with QADEAP has been developed. In the presence of citric acid-sodium hydroxide buffer solution (pH=5.0) and sodium dodecyl sulfonate (SDS) medium, QADEAP reacts with silver to form a violet complex of a molar ratio 1:2 (silver to QADEAP). The molar absorptivity of the complex is 1.33x10(5) L mol(-1) cm(-1)at 590 nm. Beer' s law is obeyed in the range of 0.01-0.6 micro g mL(-1). The relative standard deviations for eleven replicate samples of 0.2 microg mL(-1) is 1.38%. This method was applied to the determination of silver in water with satisfactory results.  相似文献   

8.
The separation of flunarizine hydrochloride (FLZ) and five of its degradation products--1-[bis(4-fluorophenyl)methyl]-4-(3-phenyl-2-propenyl)piperazine, 4-oxide (A), bis(4-fluorophenyl)methanone (B), bis(4-fluorophenyl)methanol (C), 1-(3-phenyl-2-propenyl)piperazine(D), and 1-[bis-4-fluorophenyl) methyl] piperazine (E)--could be accomplished by reversed phase liquid chromatography using either micellar or microemulsion mobile phases. Cyanopropyl-bonded stationary phase has been used with UV detection at 254 nm. Microemulsion mobile phase consisting of 0.15 M SDS, 10% n-propanol, 1% n-octanol, and 0.3% triethylamine in 0.02 M phosphoric acid of pH 7.0, has been used for the separation of FLZ and its degradation products (B, C, D, and E). Micellar mobile phases consisting of 0.15 M sodium dodecyl sulphate (SDS), 10% n-propanol, 0.3% triethylamine (TEA) in 0.02 M phosphoric acid of pH values either 4.0 or 6.8 have been used for the separation of FLZ from its degradation products, i.e. either from (B, C, D, and E) or from (A, B, C, and D), respectively. Micellar liquid chromatography (MLC) was applied to the determination of FLZ in pure form as well as in dosage forms; the calibration graph was linear over the concentration range of 0.15-50 microg/mL with detection limit of 0.02 microg/mL (4.19 x 10(-8)M).  相似文献   

9.
A method was developed to analyze methyl tert.-butyl ether (MTBE) and its degradation products by gas chromatography with mass spectrometry (GC-MS) or flame ionization detection (FID) with direct aqueous injection. The column had dimensions of 30 m x 0.25 mm with film thickness 0.25 microm and a stationary phase of FFAP (nitroterephthalic acid-modified polyethylene glycol). The optimized GC conditions for non-acid components were as follows: carrier gas flow-rate,l mL/min; oven temperature, 35 degrees C for 5.5 min, ramped to 90 degrees C at 25 degrees C/min, then ramped to 200 degrees C at 40 degrees C/min and held at 200 degrees C for 8 min. The conditions for the acid components were: carrier gas flow-rate, 1 mL/min; oven temperature, 110 degrees C for 2 min, ramped to 150 degrees C at 10 degrees C/min, then ramped to 200 degrees C at 40 degrees C/min. The injection port contained a silanized-glass reverse-cup liner filled with Carbofrit. The minimum concentrations for the linear range for the selective ion monitoring mode were 30 to 100 microg/L, depending on the analytes. The minimum detection limit was 1 mg/L for MTBE and tert.-butanol when using FID. More components could be analyzed with the FFAP-type column than with the cyanopropylphenyl-dimethyl polysiloxane-type column.  相似文献   

10.
Yeh HH  Yang YH  Chou YW  Ko JY  Chou CA  Chen SH 《Electrophoresis》2005,26(4-5):927-934
A simple micellar electrokinetic chromatography (MEKC) with UV detection at 254 nm for analysis of ceftazidime in plasma and in cerebrospinal fluid (CSF) by direct injection without any sample pretreatment is described. The separation of ceftazidime from biological matrix was performed at 25 degrees C using a background electrolyte consisting of Tris buffer with sodium dodecyl sulfate (SDS) as the electrolyte solution. Under optimal MEKC condition, good separation with high efficiency and short analyses time is achieved. Several parameters affecting the separation of the drug from biological matrix were studied, including pH and concentration of the Tris buffer and SDS. Using cefazolin as an internal standard (IS), the linear ranges of the method for the determination of ceftazidime in plasma and in CSF were all over the range of 3-90 microg/mL; the detection limit of the drug in plasma and in CSF (signal-to-noise ratio = 3; injection 0.5 psi, 5 s) was 2.0 microg/mL. The applicability of the proposed method for determination of ceftazidime in plasma and CSF collected after intravenous administration of 2 g ceftazidime in patients with meningitis was demonstrated.  相似文献   

11.
3-(2-Pyridyl)-5,6-diphenyl-1,2,4-triazine (PDT) was used for the first time as a precolumn derivatizing reagent in the high-performance liquid chromatography (HPLC) method with UV absorbance detection for the Fe(II) determination. The Fe(II) reacts with PDT to form a magenta colored chelate in the presence of sodium dodecyl sulfate (SDS) and acetic acid-sodium acetate buffer solution medium of pH 4.65. The selection of maximum absorbance detection wavelength and the optimum composition of the organic modifier in the mobile phase were investigated in detail for the quantitative determination of Fe(II) using HPLC system. The formed Fe(II)-PDT chelate was satisfactorily separated from PDT on an Agilent Shim-pack ODS column (Eclipse XDB-C8, 4.6 x 150 mm) by isocratic elution with acetonitrile and 0.02 mol L(-1) acetic acid-sodium acetate buffer solution (pH 4.65, containing 0.02% of SDS and 60 x 10(-3) mol L(-1) NaClO(4)) as mobile phase at a flow rate of 1 mL min(-1), and monitored with a multiple wavelength detector. The detection limit (S/N = 3) is 0.35 ng mL(-1). Due to the excellent separation ability of HPLC, the innovative introduction of PDT as the precolumn derivatizing reagent, and the proper selection of the detect wavelength, the sensitivity of our newly developed HPLC method was enhanced remarkably compared to those of the common spectrophotometric methods. The developed HPLC method was successfully applied to the determination of Fe(II) in lake water samples.  相似文献   

12.
A Kunkel  H W?tzig 《Electrophoresis》1999,20(12):2379-2389
A number of pharmaceuticals (e.g., acetaminophen, salicylic acid, sulfamethoxazole, theophylline, tolbutamide and trimethoprim) have been determined in human plasma by micellar electrokinetic chromatography (MEKC), without sample pretreatment, using underivatized fused-silica capillaries. The total analysis time was only 10 min. A sodium dodecyl sulfate (SDS)-containing borate buffer (60 mM with 200 mM SDS) at pH 10 was used. Between runs, proteins adsorbed to the capillary wall are removed by rinsing with SDS buffer and either acetonitrile (e.g., 50% v/v) or isopropanol (e.g., 10% v/v). Other rinsing procedures are discussed (salts, enzyme-containing solutions, organic solvents, sodium hydroxide, hydrofluoric acid). The separation system is tested in a concentration range between 10 ng/mL and 100 microg/mL; a detection limit of about 20 ng/mL can readily be obtained. The sensitivity was substantially improved using isopropanol as buffer additive. A day-to-day precision for relative peak areas of 1-2% relative standard deviation (RSD, n > 40) was reached in the upper concentration range. Under repeatability conditions, these values could also be obtained for low microg/mL concentrations. Thus, not only drug monitoring but also pharmacokinetic investigations from blood plasma become possible without further sample pretreatment.  相似文献   

13.
A micellar electrokinetic capillary chromatographic (MEKC) procedure has been developed for the separation and determination of dioxouranium (VI), iron(III), copper(II), and nickel(II) using bis(salicylaldehyde)propylenediimine (H2SA2Pn) as chelating reagent with a total run time of <3 min. Sodium dodecyl sulphate (SDS) was used as micellar medium at pH 8.1 with sodium tetraborate buffer (0.1 M). Uncoated fused silica capillary with effective length 38.8 cmx75 microm id was used with an applied voltage of 30 kV and photo-diode array detection at 228 nm. Linear calibrations were established within 0.045-1000 microg/mL of each element with detection limit within 15-122 ng/mL. The method was applied to the analysis of spring water and rock samples. The presence of uranium in rock and spring water samples was established within 1.58-1739.3 microg/g and 0.047-0.712 microg/mL with relative standard deviation within 0.9-2.1% and 1.3-2.6% respectively. Uranium ore and water samples were also assayed by the standard addition technique. Recovery of uranium was >98% with RSD up to 2.7%. Copper, nickel, and iron in their combined matrix were concurrently determined within RSD 0.6-3.6% (n=5) and the results obtained were compared with those of flame AAS.  相似文献   

14.
张丹  曾经泽  边巴仓决  蒋学华 《色谱》1997,15(6):515-517
采用ODS柱,甲醇-稀磷酸溶液(7624)为流动相,260nm为检测波长,建立了测定血浆中吲哚美辛浓度的高效液相色谱法,并测定了吲哚美辛控释胶囊炎痛康的血药浓度。结果表明,血浆中吲哚美辛浓度在0.125~5.0mg/L范围内线性关系良好(r=0.9996),检测限62.5μg/L(S/N=31),平均回收率为100.4%,日内和日间RSD均小于5%。11位受试者单剂量口服炎痛康后的相对生物利用度为102.38%。  相似文献   

15.
A new MEEKC method assisted with pressure-driven mobile phase was presented for the separation of felted explosives. Microemulsion solution was composed of 80 mmol/L heptane-120 mmol/L SDS (sodium dodecyl sulphate)-900 mmol/L butanol-10 mmol/L borate at pH 9.4 and a pressure-driven flow of 0.020 mL/min under 1.3 MPa was employed to manipulate the separation. Explosives HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane) and TATB(triamino-trinitrobenzene), which were felted on fluorine rubber F2311 (polytrifluorochlorethylene and polyvinylidene fluoride 1/1 co-polymerization) and F2314 (polytrifluorochlorethylene and polyvinylidene fluoride 4/1 co-polymerization) were well separated with very good peak shapes.  相似文献   

16.
Highly sensitive and interference-free sensitized spectrophotometric method for the determination of Ni(II) ions is described. The method is based on the reaction between Ni(II) ion and benzyl dioxime in micellar media in the presence of sodium dodecyl sulfate (SDS). The absorbance is linear from 0.1 up to 25.0 microg mL-1 in aqueous solution with repeatability (RSD) of 1.0% at a concentration of 1 microg mL-1 and a detection limit of 0.12 ng mL-1 and molar absorption coefficient of 68,600L mol-1 cm-1. The influence of reaction variables including type and amount of surfactant, pH, and amount of ligand and complexation time and the effect of interfering ions are investigated. The proposed procedure was applied to the determination of trace amounts of Ni(II) ion in tap water, river water, chocolate and vegetable without separation or organic solvent extraction.  相似文献   

17.
A simple reversed-phase high-performance liquid chromatography (HPLC) method with ultraviolet detection at 280 nm was developed for simultaneous quantitation of furosemide and hydrochlorothiazide along with phenol red as a nonabsorbable marker for in situ permeability studies in anaesthetized rats. A jejunal segment of approximately 10 cm was isolated and cannulated in both ends for inlet and outlet solution. The perfusate was collected every 10 min, and samples were analyzed using the developed method. The mobile phase was acetonitrile-water-triethylamine-glacial acetic acid (41.5 + 57.4 + 0.1 + 0.9, adjusted to pH 5.6) at a flow rate of 1 mL/min; the run time was 9 min. The calibration graphs were linear for all 3 compounds (r > 0.999) across the concentration range of 7.93-125 microg/mL for phenol red and 6.25-100 microg/mL for hydrochlorothiazide and furosemide. The limits of quantitation were 7.2, 8.9, and 6.8 microg/mL for furosemide, hydrochlorothiazide, and phenol red, respectively. The coefficients of variation for intraassay and interassay precision were less than or equal to 7.6%, and the accuracy was between 93.2-103.4%. Using the single pass intestinal perfusion technique and the suggested HPLC method for sample analysis, mean values of 0.25 x 10(-4) (+/-0.16) cm/s and 0.22 x 10(-4) (+/-0.13) cm/s were obtained for furosemide and hydrochlorothiazide, respectively.  相似文献   

18.
The simultaneous determination of 16 estrogens, dehydroepiandrosterone (DHEA) and their glucuronide and sulfate conjugates by micellar electrokinetic chromatography (MEKC) with sodium cholate micelle is reported. Sodium cholate, sodium dodecylsulfate (SDS) and alpha-, beta-, gamma-cyclodextrins were studied as micelle reagents in the pH range of 7.0-10.0. Estrogens, DHEA and their glucuronide and sulfate conjugates were separated using a 50 cm x 50 microm capillary with 10 mM borate-phosphate buffer (pH 8.0) containing 50 mM sodium cholate as carrier. The method could simultaneously determine 1.0-1000 microg/mL of steroids and metabolites in 100 microL of serum by photometric detection at 214 nm within 14 min and 80 ng/mL steroids could be determined by using 2.0 mL of serum. The relative standards deviations were 6.7-7.7% at 10 microg/mL in serum. The recoveries were 89.1-92.0% with 10 microg/mL serum samples.  相似文献   

19.
A novel method for the non-derivatization liquid chromatographic determination of streptomycin (STR) and dihydrostreptomycin (DHSTR) was developed and validated based on evaporative light scattering detection (ELSD). Utilizing a ThermoHypersil BetaBasic C18 analytical column, evaporation temperature of 50 degrees C and pressure of nebulizing gas (nitrogen) of 3.5 bar, the optimized mobile phase was 1.25 mL L(-1) TFA aqueous solution, in an isocratic mode at a rate of 1.0 mL min(-1). STR was eluted at 5.6 min and DHSTR at 7.8 min with a resolution of 4.4. Linear calibration curves were obtained from 2 to 120 microg mL(-1) (r > 0.9990) for STR and 2-75 microg mL(-1) (r > 0.9994) for DHSTR, with a LOD equal to 0.7 and 0.5 microg mL(-1), respectively. The developed method was applied for the assay of STR and DHSTR (sulfate) in pharmaceutical raw materials and formulations, while the simultaneous direct determination of sulfate was feasible (tR = 2.5 min, LOD = 1.4 microg mL(-1), double logarithmic calibration curve in the range of 4-50 microg mL(-1), r > 0.9998). Modified isocratic mobile phase (H2O-ACN, 90:10, v/v, containing 1.25 mL L(-1) TFA), was used for the determination of streptomycin B impurity in STR sulfate raw material and a gradient mobile phase (H2O-ACN containing TFA) was used for the determination of DHSTR in the presence of penicillinG procaine. The developed method was also applied for the assay of commercial formulations (STR powder and DHSTR injection solution and suspension) (%recovery 98-102, %RSD < 1.3, n = 3 x 3), for the determination of STR in bacteria culture medium (%recovery 99.6, %RSD = 0.8, n = 3 x 3), and for the determination of DHSTR in human plasma (2.0-23.0 microg mL(-1)) after solid phase extraction using carboxylate cartridges (%recovery 98.4-101.8, %RSD = 3.2, n = 3 x 3).  相似文献   

20.
A green chromatographic analytical method for determination of fat-soluble vitamins (A, E, D3 and K1) in food and pharmaceutical supplement samples is proposed. The method is based on the modification of a C18 column with a 3.00% (w/v) sodium dodecyl sulphate (SDS) aqueous solution at pH 7 (0.02 mol L(-1) phosphate buffer solution) and in the usage of the same surfactant solution as mobile phase with the presence of 15.0% (v/v) butyl alcohol as an organic solvent modifier. After the separation process, the vitamins are detected at 230 nm (K1, D3 and E), 280 nm (A, E, D3 and K1) and 300 nm (K1, D3 and E). The chromatographic procedure yielded precise results (better than 5%) and is able to run one sample in 25 min, consuming 1.5 g of SDS, 90 mg of phosphate and 7.5 mL of butyl alcohol. When the flow rate of the mobile phase is 2 mL min(-1) the retention times are 4.0, 9.6, 13.0 and 22.7 min for D3, A, E and K1 vitamins, respectively; and all peak resolutions are higher than 2. The analytical curves present the following linear equations: area=6290+34852 (vitamin A), R2=0.9998; area=4092+36333 (vitamin E), R2=0.9997; area=-794+30382 (vitamin D3) R2=0.9998 and area=-7175+82621 (vitamin K1), R2=0.9996. The limits of detection and quantification for vitamins A, E, D(3) and K(1) were estimated for a test pharmaceutical vitamin supplement sample as 0.81, 1.12, 0.91 and 0.83 mg L(-1) and 2.43, 3.36, 2.73 and 2.49, respectively. When the proposed method was applied to food and pharmaceutical sample analysis, precise results were obtained (R.S.D.<5% and n=3) and in agreement with those obtained by using the classical chromatographic method that uses methanol and acetonitrile as mobile phase. Here, the traditional usage of toxic organic solvent as mobile phase is avoided, which permits to classify the present method as green.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号