首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a combination of selected ions as a terminating ion which is useful for transient isotachophoresis (ITP) in capillary zone electrophoresis (CZE) for the determination of nitrite and nitrate in seawater. In addition to 150 mM sulfate as the principal terminating ion, 10 mM bromate was added to a sample solution as the additional terminating ion. Artificial seawater containing 3 mM cetyltrimethylammonium chloride (CTAC) was adopted as a background electrolyte (BGE). The limits of detection (LODs) for nitrite and nitrate were 2.2 and 1.0 microg/L (as nitrogen), respectively. The LODs were obtained at a signal to noise ratio (S/N) of 3. The values of the relative standard deviation (RSD) of peak area for these ions were 1.9 and 1.4%. The RSDs of peak height were 1.7 and 1.9%, the RSDs of migration time 0.11%. The proposed method was applied to the determination of nitrite and nitrate in a proposed certified reference material for nutrients in seawater, MOOS-1, distributed by the National Research Council of Canada (NRC). The results almost agreed with the assigned tolerance interval.  相似文献   

2.
We have examined transient isotachophoresis (ITP) conditions, e.g. the nature of the terminating ion, its concentration, and the injection procedure, to improve the limit of detection (LOD) for determination of nitrite and nitrate in seawater by capillary zone electrophoresis (CZE). Artificial seawater containing 3.0 mmol L(-1) cetyltrimethylammonium chloride (CTAC) was used as background electrolyte (BGE). After sample injection 600 mmol L(-1) acetate was separately injected into the capillary as the terminating ion for transient ITP. The LOD for nitrite and nitrate, obtained at a signal-to-noise ratio (S/N) of 3, were 15 and 7.0 microg L(-1) (as nitrogen), respectively. Relative standard deviations (RSD) of peak area for nitrite and nitrate were 7.3 and 0.8%, respectively, and the RSD of peak height were 5.7 and 1.2%, respectively, when the concentrations of nitrite and nitrate were 0.05 and 0.25 mg L(-1). The RSD of migration time for these ions was 0.2%. The proposed method was applied to the determination of nitrite and nitrate in seawater samples. The results for nitrite were nearly in agreement with those obtained by naphthylethylenediamine spectrophotometric analysis (SPA; correlation coefficient 0.9041).  相似文献   

3.
We describe capillary zone electrophoresis (CZE) with transient isotachophoresis (ITP) for the determination of low concentrations of nitrite and nitrate ions in seawater. Bromide-free artificial seawater was adopted as background electrolyte (BGE) to eliminate the interference of high concentrations of salts in seawater. To reverse the electroosmotic flow (EOF), 3 mM cetyltrimethylammonium chloride (CTAC) was added to the BGE. High concentrations of chlorate were added to sample solutions as the terminating ion to generate the ITP process before the CZE separation. In general, the stacking effect increased with increasing amounts of chlorate injected into the capillary. The limits of detection (LODs) for nitrite and nitrate were 0.063 and 0.033 mg/L when the chlorate concentration was 600 and 200 mM, respectively; these were half of those obtained by CZE without the transient ITP. The LODs were obtained at a signal to noise ratio (S/N) of 3. The relative standard deviations (RSD, n = 10) of the peak areas for these ions were 3.2 and 2.9%. The RSDs of peak heights for these ions were 1.6 and 2.1%. The RSDs of migration times for these ions were 0.67 and 0.46%.  相似文献   

4.
We describe an application of capillary zone electrophoresis (CZE) with transient isotachophoresis (ITP) as the on-line concentration procedure for the determination of iodide in seawater. The effective mobility of iodide was decreased by the addition of 10 mM cetyltrimethylammonium chloride (CTAC) to an artificial seawater background electrolyte (BGE) so that transient ITP functioned and iodide was separated from other coexisting anions such as bromide, nitrite, and nitrate in seawater samples. After sample injection, 600 mM acetate was separately injected into the capillary as the terminating ion to generate transient ITP. The limit of detection (LOD) for iodide was 3.0 microg/L. The LOD was obtained at a signal-to-noise ratio (S/N) of 3. The values of the relative standard deviation (RSD) of peak area, peak height, and migration time for iodide were 2.9, 2.1, and 0.6%. The proposed method was applied to the determination of iodide in seawater collected around the Osaka Bay. The results obtained by use of the calibration graph were agreed with those obtained by the addition of the standard solutions for iodide.  相似文献   

5.
We describe capillary zone electrophoresis (CZE) for the simultaneous determination of bromide, nitrite and nitrate ions in seawater. Artificial seawater was adopted as the carrier solution to eliminate the interference of high concentrations of salts in seawater. The artificial seawater was free from bromide ion to enable the determination of bromide ion in a sample solution. For the purpose of reversing the electroosmotic flow (EOF), 3 mM cetyltrimethylammonium chloride (CTAC) was added to the carrier solution. A 100 microm ID (inside diameter) capillary was used to extend the optical path length. The limits of detection (LODs) for bromide, nitrite, and nitrate ions were 0.46, 0.072, and 0.042 mg/L (as nitrogen), respectively. The LODs were obtained at a signal to noise ratio (S/N) of 3. The values of the relative standard deviation (RSD) of peak area for these ions were 1.1, 1.5, and 0.97%. The RSDs of migration time for these ions were 0.61, 0.69, and 0.66%. Artificial seawater samples containing various concentrations of bromide, nitrite, and nitrate ions were analyzed by the method. The error was less than +/-12% even if the concentration ratio of bromide ion to nitrite or nitrate ion was 20-240. The proposed method was applied to the determination of bromide, nitrite, and nitrate ions in seawater samples taken from the surface and the seabed. These ions in other environmental waters such as river water and rainwater samples were also determined by ion chromatography (IC) as well as this method.  相似文献   

6.
We developed capillary zone electrophoresis (CZE) with direct UV detection for determination of ammonium in environmental water samples. Ammonium in the samples was partly converted into ammonia in the alkaline background electrolyte (BGE) during migration and was detected by molecular absorption of ammonia at 190 nm in approximately 7 min. The limit of detection (LOD) for ammonium was 0.24 mg/l (as nitrogen) at a signal-to-noise ratio of three. The respective values of the relative standard deviation (RSD) of peak area, peak height, and migration time for ammonium were 2.1, 1.8, and 0.46%. Major alkali and alkaline earth metal ions coexisting in the samples did not interfere with ammonium determination by the proposed method. The proposed method determined ammonium in surface water and sewage samples. The results were compared to those obtained using ion chromatography (IC).  相似文献   

7.
A capillary zone electrophoresis (CZE) method was established to determine low concentration nitrate which was online preconcentrated with chloride-induced leading-type sample self-stacking for seawater samples. The sample self-stacking was based on transient isotachophoresis in which chloride served as leading ion, and dihydrogenphosphate in the background electrolyte (0.1 M phosphate) as the terminating one. Due to the small mobility difference between nitrate and chloride, the isotachophoresis time was so long that nitrate could not separate from the rear sharp boundary between chloride and the background electrolyte (BGE) when it migrated to the detection window. A zwitterionic surfactant, 3-(N,N-dimethyldodecylammonio)propane sulfonate was added to the BGE to enlarge the mobility difference for its selective interaction with anions. Thus, a highly conductive sample could be injected in a large volume with about fourfold sensitivity enhancement compared to that of field amplification sample stacking in which nitrate was dissolved in pure water. The relative standard deviations (n=5) of migration time, peak area, peak height were 0.1, 3.0, 1.5%, respectively. The limit of detection (S/N=3) for nitrate was 35 microg/l in seawater samples with relatively low concentration BGE (0.1 M sodium phosphate, pH 6.2). The overall procedure consisting of online preconcentration and separation was as simple as routine CZE except for a slightly longer sample injection time (3-4 min).  相似文献   

8.
Ethylenediaminetetraacetic acid (EDTA) in the background electrolyte (BGE) of capillary zone electrophoresis coupled to an electrospray ionization mass spectrometer is presented as an approach for the determination of metal ions. Significant signals for the metal-ligand complexes were observed even when EDTA was continually eluted from the capillary during the entire electrophoretic run. The signal-to-noise ratio was improved by the addition of ammonia to the sheath liquid and by using an acquisition m/z range above the m/z of EDTA. The LODs for the test metal ions (i.e. calcium(II), manganese(II), and zinc(II)) with conventional injection were around 1-2 mg/L with corrected peak areas that are linear from 8 to 100 mg/L. The presence of EDTA in the BGE was critical not only for the separation but also for sweeping via complexation as an on-line sample concentration technique. The peak height of the test metal ions was improved at least tenfold with sweeping via EDTA complexation and yielded LODs in the μg/L range.  相似文献   

9.
We developed CZE with indirect UV detection for the determination of phosphate in seawater using transient ITP as an on-line concentration procedure. The following optimum conditions were established: BGE, 5 mM 2,6-pyridinedicarboxylic acid (PDC) containing 0.01% hydroxypropylmethylcellulose (HPMC) adjusted to pH 3.5; detection wavelength, 200 nm; vacuum injection period of sample, 3 s (45 nL); terminating ion solution, 500 mM MES adjusted to pH 4.0; vacuum injection period of the terminating ion solution, 30 s (450 nL); applied voltage, 30 kV with the sample inlet side as the cathode. The LOD for phosphate was 16 microg/L (PO(3-)(4) -P) at S/N of 3. The respective values of the RSD of the peak area, peak height, and migration time for phosphate were 2.6, 2.3, and 0.34%. The proposed method was applied to the determination of phosphate in a seawater certified reference material for nutrients, MOOS-1, distributed by the National Research Council of Canada (NRC). The results were very similar to certified values. The method was also applied to the determination of phosphate in coastal seawaters. The results agreed with those obtained using a conventional spectrophotometric method.  相似文献   

10.
An alternative CE‐(indirect ultraviolet) method for the analysis of inorganic and organic anions in ethylene glycol‐based engine coolants is presented using a BGE with 4 mM pyromellitic acid and 3.4 mM 1,6‐hexamethylene diamine, pH 3. Baseline separation of six inorganic (e.g. nitrite, nitrate, and sulfate) and five organic anions (e.g. acetic and glycolic acid) was achieved. Quantification of 8 out of 11 specified anions was possible in stressed engine coolant samples after simple aqueous dilution. LODs between 0.8 and 15.1 mg/L with RSD values of peak areas between 2.6 and 11.9% were obtained. Some limitations due to matrix effects can be overcome with slight adaptations of the BGE. The flexibility of the method is vital regarding the increasing demands for the composition of engine coolants for pollution reduction.  相似文献   

11.
Ion-exchange chromatography using a high-capacity anion exchanger with UV detection was applied to the determination of nitrate in seawater. Major ions in seawater samples did not affect the peak shape and the retention time of the nitrate when an alkaline metal cation-chloride solution was used as an eluent at high concentrations (0.5-2 mol/l). At a wavelength of 220 nm, the peak of bromide was very small because of low absorption, while its separation from the nitrate peak was good at high concentrations. Among the eluents tested, lithium chloride gave the best separation of nitrate from bromide. It was estimated that the lithium ion had the least potential for ion-pair formation with nitrate, and its retention time was prolonged compared with the retention times when using other cations; with bromide and nitrite, such an effect was not observed. The results of shipboard seawater nitrate determination by our method in the South Pacific Ocean and Antarctic Sea showed good agreement with those by the conventional photometric method using continuous flow.  相似文献   

12.
R Knob  V Maier  J Petr  V Ranc  J Sevčík 《Electrophoresis》2012,33(14):2159-2166
Separation of major environmental pollutants as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) by capillary electrophoresis is reported for the first time. It is not possible to resolve the solutes in an aqueous media. However, the use of methanol and acetonitrile as the background electrolyte (BGE) solvents allowed their rapid separation in an uncoated capillary. A major effort was put into BGE optimization in respect to both separation efficiency and detection for further on‐line preconcentration. 5 mmol.L?1 naphthalene‐1‐sulfonic acid and 10 mmol.L?1 triethylamine dissolved in ACN/MeOH (50:50 v/v) provided best separation and detection conditions. Next, the large‐volume sample stacking and the field‐amplified sample injection were applied and compared. Large‐volume sample stacking improved limits of detection (LODs) with regard to the standard injection by 69 times for PFOA and 143 times for PFOS with LODs of 280 and 230 nmol.L?1, respectively. Field‐amplified sample injection improved LODs 624 times for PFOAand 806 times for PFOS with LODs 31 and 40 nmol.L?1, respectively. Both preconcentration methods showed repeatabilities of migration times less than 1.2% RSD intraday and 6.6% RSD interday. The method was applied on PFOA and PFOS analysis in a sample of river water treated with solid‐phase extraction, which further improved LOD toward 5.6 × 10?10 mol.L?1 for PFOS and 6.4 × 10?10 mol.L?1 for PFOA and allows the method to be used for river water contamination screening or decomposition studies.  相似文献   

13.
A simple method for the determination of nitrite and nitrate in human plasma has been developed using CZE with minimal sample preparation. Field‐amplified sample stacking (FASS) was used to achieve submicromolar detection by dilution of the plasma sample with deionized water. In CZE, the separation of nitrite and nitrate was achieved within 10 min without adding EOF modifier. The optimal condition was achieved with 50 mM phosphate buffer at pH 9.3. The ninefold diluted plasma samples were injected hydrodynamically for 40 s into a 60 cm×75 μm id uncoated fused‐silica capillary. The separation voltage was 20 kV (negative potential) and UV detection was performed at 214 nm. The linearity curves for nitrite and nitrate were obtained by the standard addition method. The estimated LODs for nitrite and nitrate in ninefold diluted plasma sample were 0.05 and 0.07 μM, respectively. The LODs for nitrite and nitrate in original plasma samples were 0.45 and 0.63 μM. The intra‐ and inter‐day precisions for both analytes were <2.6% and the recovery ranged between 92.3 and 113.3%. It was found that nitrite was more stable than nitrate in the plasma after the sample preparation. This proposed method was applied to a number of human plasma samples and the measured nitrite and nitrate concentrations in human plasma were consistent with the literature ranges.  相似文献   

14.
In capillary electrophoresis, it is commonly considered that even a moderately high ionic concentration in the background electrolyte (BGE) leads to high currents, resulting in Joule heating and serious peak distortion. As a new approach to overcome this problem, zwitterionic (Zwittergent-3-14) and/or non-ionic (Tween 20) surfactants have been added to BGEs containing high salt concentrations (e.g. 0.3 M NaCl) and have been shown to result in acceptable separation currents (<200 microA). In turn, these BGEs could be applied to the separation of samples containing high salt concentrations (such as undiluted seawater) without the occurrence of any significant peak broadening due to electrodispersion of the sample. For example, a BGE comprising 10 mM Zwittergent-3-14, 50 mM Tween 20, 0.3 M NaCl and 5 mM phosphate (ph 7) could be used for the determination of UV-absorbing anions in seawater, giving good peak shapes and detection limits of 0.8 microM and 0.6 microM for nitrate and bromide, respectively. The beneficial effects of the non-ionic surfactant on the separation were attributed largely to suppression of the electro-osmotic flow. On the other hand, the zwitterionic surfactant was found to be capable of the incorporation of some anions in accordance with the behaviour of these same surfactants in electrostatic ion chromatography. This incorporation resulted in a decreased conductivity of the BGE and also a change in the separation selectivity of the system.  相似文献   

15.
A novel electrophoretic BGE containing tungstate as complex-forming reagent is suitable for the separation of polyphenols. Similar to molybdate-containing BGE reported earlier (cf. M. Polásek, et al.., Talanta 2006, 69, 192) addition of tungstate to BGE affects significantly migration of compounds/ligands with vicinal -OH groups due to the formation of negatively charged complexes involving W(VI) as central ion. Baseline separation of mixtures of flavonoids (apigenin, luteolin, hyperoside, quercetin, and rutin) and phenolic acids (chlorogenic and p-coumaric acid) was achieved within 15 min with optimized BGE of pH 7.4 containing 50 mM N-(2-hydroxyethyl)piperazine-2'-(2-ethanesulfonic acid) (HEPES), 2.2 mM tungstate, and 25% v/v of methanol. The separation was performed in a 75 cm (effective length 42 cm)x 75 microm id uncoated fused-silica capillary at 30 kV with spectrophotometric detection at 275 nm. The calibration curves were rectilinear for 25-175 microg/mL of all analytes (cinnamic acid as the internal standard). The LODs ranged from 1.8 to 6 microg/mL for all analytes except for chlorogenic acid. Intraday precision (n = 6) of migration times (RSD < or = 1.2%) and peak areas (RSD < or = 5.6%) was evaluated. The tungstate-based BGEs can be alternatively utilized for the analysis of polyphenols at considerably lower pH than with conventional alkaline borate-based BGEs.  相似文献   

16.
2D computer simulation revealed that amino acids and weak electrolytes were cationized because of the migration of counter‐ion from a BGE zone to a sample zone, which encouraged electrokinetic injection (EKI) of these analytes (by the mobility‐boost (MB) effect). To investigate the effects of kinds and concentrations of counter‐ions on the MB effect and the analyte amount injected into the capillary, experiments, and 1D computer simulations were performed. When acetate was used as the counter‐ion, the LODs (S/N = 3) of l ‐histidine and creatinine, respectively, reached 0.10 and 0.25 nM because of the concentration effect by transient ITP (tITP). The concentrations of l ‐histidine and creatinine in human blood plasma obtained using the proposed method were agreed with those obtained using the conventional methods. The proposed method can be applied to the analysis of amino acids and weak bases that have similar pI and pKa to l ‐histidine and creatinine.  相似文献   

17.
A method is proposed which presents a new approach to the joint use of capillary electrophoresis (CE) commercial equipment and a flow system. This flow system allows the total determination of several compounds by using a fluorimetric screening system. The individual determination for each analyte is performed by the CE proposed method. The screening procedure uses simple equipment and operations and provides a yes/no binary response that occasionally requires confirmation. A fast, simple, and reliable method has been developed in order to determine the most frequent mycotoxins in feed samples using micellar electrokinetic capillary chromatography (MECC). An extraction step followed by a purification step was carried out on the samples in order to remove interference substances before analysis. A C18 column was chosen to concentrate the mycotoxins, and the analytes were eluted from C18 using methanol. The MECC method allows the separation of six mycotoxins within 50 min with a reproducibility as RSD between 7.45 and 13.06%, and a limit of detection (LOD) between 0.02 and 0.06 mg l(-1) for all the mycotoxins. These LODs were clearly below legal limits (0.05 mg l(-1)).  相似文献   

18.
Fung YF  Lau KM 《Electrophoresis》2001,22(11):2192-2200
A new analytical procedure is developed using a strong complexing agent, 1,10-phenanthroline (Phen), for direct UV detection of Zn, Mn, Cu, Co, Cd, and Fe at microg/L concentrations in environmental water samples. The metal chelates formed showed different electrophoretic mobilities and solved the comigration problem for capillary electrophoresis (CE) separation of free metal ions. To obtain stable metal-Phen chelates during the capillary zone electrophoresis (CZE) run, both pre-column and on-column complexation are required and threefold excess of Phen over metal ions should be added to the sample. The optimized background electrolyte (BGE) consists of 30 mM hydroxylamine hydrochloride and 0.1% methanol at pH 3.6. Under hydrodynamic sampling, CE run at + 20 kV in 65 cm x 0.05 mm ID fused-silica column with detection at 265 nm, baseline separation, satisfactory working ranges (10 microg/L to 5.5 mg/L), sensitive detection limits (1-3 microg/L), good repeatability for migration times (relative standard deviation, RSD 0.36-0.81%, n = 5), peak area (RSD 3.2-4.2%, n = 5) and peak height (RSD 3.2-4.5%, n = 5) were obtained for the metal cations investigated. The reliability of the method was established by parallel determination using the inductively coupled plasma-atomic emission spectrometry (ICP-AES) method giving results within statistical variation. The procedure developed is shown to provide a quick, sensitive, precise, and economic method for simultaneous determination of metal cations that can form stable chelates with Phen.  相似文献   

19.
The present work describes a capillary electrophoretic method for nitrite and nitrate determination to be used as a screening tool for investigating the residues of firearm discharge. The use of capillary electrophoresis allowed the rapid determination of nitrite and nitrate, which are major inorganic components of gunshot residues, offering a quantitative and selective alternative to the traditional paraffin test (dermal nitrate test). The method is simpler, cheaper, and faster than the modern approaches to gunshot residue analysis based on the determination of barium, lead and antimony by using flameless absorption spectrometry, inductively coupled plasma-mass spectrometry (ICP-MS), or scanning electron microscopy. The analysis was carried out in a bare fused-silica capillary (75 microm inner diameter) with a 100 mM borate buffer (pH 9.24). The detection was by UV absorption at 214 nm. Separation took place under reversed voltage of 15 kV. Bromide was used as the internal standard. Sensitivity was about 1 mM for both nitrite and nitrate. Reproducibility (intraday and day-to-day) was also good with relative standard deviations (RSDs) < 1.0% for relative migration times and < 4.5% for peak areas in both standard solutions and real matrix. Hair and skin samples from a victim shot in the head were successfully analyzed for the presence of nitrite and nitrate.  相似文献   

20.
Chan MS  Huang SD 《Talanta》2000,51(2):373-380
Methods for the direct determination of copper and cadmium in seawater were described using a graphite furnace atomic absorption spectrometer (GFAAS) equipped with a transversely heated graphite atomizer (THGA) and a longitudinal Zeeman effect background corrector. Ammonium nitrate was used as the chemical modifier to determine copper. The mixture of di-ammonium hydrogen phosphate and ammonium nitrate was used as the chemical modifier to determine cadmium. The matrix interference was removed completely so that a simple calibration curve method could be applied. This work is the first one with the capability of determining cadmium in unpolluted seawater directly with GFAAS using calibration curve based on simple aqueous standards. The accuracy of the methods was confirmed by analysis of three kinds of certified reference saline waters. The detection limits (LODs), with injection of a 20-mul aliquot of seawater sample, were 0.06 mug l(-1) for copper and 0.005 mug l(-1) for cadmium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号