首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
苗长兴 《数学进展》2007,36(6):641-671
本文致力于阐述调和分析与现代偏微分方程研究的关系,特别是奇异积分算子、拟微分算子、Fourier限制性估计、Fourier频率分解方法在椭圆边值问题、非线性发展方程研究中的重要作用.对于偏微分方程研究的各种方法进行了比较与分析,指出了偏微分方程的调和分析方法的优点与局限性.与此同时,还给出了偏微分方程的调和分析方法这一领域的最新研究进展.  相似文献   

2.
Analytical solutions for two-dimensional oscillatory flow on free convective-radiation of an incompressible viscous fluid, through a highly porous medium bounded by an infinite vertical plate are reported. The Rosseland diffusion approximation is used to describe the radiation heat flux in the energy equation. The resulting non-linear partial differential equations were transformed into a set of ordinary differential equations using two-term series. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. The free-stream velocity of the fluid vibrates about a mean constant value and the surface absorbs the fluid with constant velocity. Expressions for the velocity and the temperature are obtained. To know the physics of the problem analytical results are discussed with the help of graph.  相似文献   

3.
In this paper, we predict the accurate bifurcating periodic solution for a general class of first-order nonlinear delay differential equation with reflectional symmetry by constructing an approximate technique, named residue harmonic balance. This technique combines the features of the homotopy concept with harmonic balance which leads to easy computation and gives accurate prediction on the periodic solution to the desired accuracy. The zeroth-order solution using just one Fourier term is applied by solving a set of nonlinear algebraic equations containing the delay term. The unbalanced residues due to Fourier truncation are considered iteratively by solving linear equations to improve the accuracy and increase the number of Fourier terms of the solutions successively. It is shown that the solutions are valid for a wide range of variation of the parameters by two examples. The second-order approximations of the periodic solutions are found to be in excellent agreement with those obtained by direct numerical integration. Moreover, the residue harmonic balance method works not only in determining the amplitude but also the frequency of the bifurcating periodic solution. The method can be easily extended to other delay differential equations.  相似文献   

4.
Recently, an analytical technique has been developed to determine approximate solutions of strongly nonlinear differential equations containing higher order harmonic terms. Usually, a set of nonlinear algebraic equations is solved in this method. However, analytical solutions of these algebraic equations are not always possible, especially in the case of a large oscillation. Previously such algebraic equations for the Duffing equation were solved in powers of a small parameter; but the solutions measure desired results when the amplitude is an order of 1. In this article different parameters of the same nonlinear problems are found, for which the power series produces desired results even for the large oscillation. Moreover, two or three terms of this power series solution measure a good result when the amplitude is an order of 1. Besides these, a suitable truncation formula is found in which the solution measures better results than existing solutions. The method is mainly illustrated by the Duffing oscillator but it is also useful for many other nonlinear problems.  相似文献   

5.
This paper presents a new approach for solving accurate approximate analytical higher-order solutions for strong nonlinear Duffing oscillators with cubic–quintic nonlinear restoring force. The system is conservative and with odd nonlinearity. The new approach couples Newton’s method with harmonic balancing. Unlike the classical harmonic balance method, accurate analytical approximate solutions are possible because linearization of the governing differential equation by Newton’s method is conducted prior to harmonic balancing. The approach yields simple linear algebraic equations instead of nonlinear algebraic equations without analytical solution. Using the approach, accurate higher-order approximate analytical expressions for period and periodic solution are established. These approximate solutions are valid for small as well as large amplitudes of oscillation. In addition, it is not restricted to the presence of a small parameter such as in the classical perturbation method. Illustrative examples are presented to verify accuracy and explicitness of the approximate solutions. The effect of strong quintic nonlinearity on accuracy as compared to cubic nonlinearity is also discussed.  相似文献   

6.
The nonlinear modeling and subsequent dynamic analysis of cracked Timoshenko beams with functionally graded material (FGM) properties is investigated for the first time using harmonic balance method followed by an iterative technique. Crack is assumed to be open throughout. During modeling, nonlinear strain–displacement relation is considered. Rotational spring model is adopted in order to model the open cracks. Energy formulations are established using Timoshenko beam theory. Nonlinear governing differential equations of motion are derived using Lagrange's equation. In order to incorporate the influence of higher order harmonics, harmonic balance method is employed. This reduces the governing differential equations into nonlinear set of algebraic equations. These equations are solved using two different iterative techniques. Methodology is computationally easier and efficient as well. This is observed that although assumption of simple harmonic motion (SHM) simplifies the problem, it yields to erroneous results at higher amplitude of motion. However, accuracy of the solution is improved considerably when the contribution of higher order harmonic terms are considered in the analysis. Results are compared with the available results, which confirm the validity of the methodology. Subsequent to that a parametric study on influence of forcing term, material indices and crack parameters on large amplitude vibration of Timoshenko beams is performed for two different boundary conditions.  相似文献   

7.
In this work, propagation of harmonic waves in initially stressed cylindrical viscoelastic thick tubes filled with a Newtonian fluid is studied. The tube, subjected to a static inner pressure Pi and a positive axial stretch λ, will be considered as an incompressible viscoelastic and fibrous material. The fluid is assumed as an incompressible, viscous and dusty fluid. The field equations for the fluid are obtained in the cylindrical coordinates. The governing differential equations of the tube’s viscoelastic material are obtained also in the cylindrical coordinates utilizing the theory of small deformations superimposed on large initial static deformations. For the axially symmetric motion the field equations are solved by assuming harmonic wave solutions. A closed form solution can be obtained for equations governing the fluid body, but due to the variability of the coefficients of resulting differential equations of the solid body, such a closed form solution is not possible to obtain. For that reason, equations for the solid body and the boundary conditions are treated numerically by the finite-difference method to obtain the effects of the thickness of the tube on the wave characteristics. Dispersion relation is obtained using the long wave approximation and, the wave velocities and the transmission coefficients are computed.  相似文献   

8.
We study the existence of a solution of controlled stochastic differential equations remaining in a given set of constraints at any time smaller than the exit time of a given open set. We also investigate the small time attainability of a given closed set K, i.e., the property that, for all arbitrary small time horizon T and for all initial condition in a sufficiently small neighborhood of K, there exists a solution to the controlled stochastic differential equation which reaches K before T.  相似文献   

9.
We consider multiply hyperharmonic functions on the product space of two harmonic spaces in the sense of Constantinescu and Cornea. Earlier multiply superharmonic and harmonic functions have been studied in Brelot spaces notably by GowriSankaran. Important examples of Brelot spaces are solutions of elliptic differential equations. The theory of general harmonic spaces covers in addition to Brelot spaces also solution of parabolic differential equations. A locally lower bounded function is multiply hyperharmonic on the product space of two harmonic spaces if it is a hyperharmonic function in each variable for every fixed value of the other. We prove similar results as in Brelot spaces, but our approach is different. We study sheaf properties of multiply hyperharmonic functions. Our main theorem states that multiply hyperharmonic functions are lower semicontinuous and satisfy the axiom of completeness with respect to products of relatively compact sets. We also study nearly multiply hyperharmonic functions.  相似文献   

10.
The evolution of third harmonic resonant narrow bandwidth capillary-gravity waves on an interface of two fluids is considered. The method of multiple scales is utilised in order to derive a set of first order coupled nonlinear partial differential equations which model the evolution of the wavepacket. Some solution families are exhibited.  相似文献   

11.
This paper proposes a meshless method based on coupling the method of fundamental solutions (MFS) with quasi-interpolation for the solution of nonhomogeneous polyharmonic problems. The original problems are transformed to homogeneous problems by subtracting a particular solution of the governing differential equation. The particular solution is approximated by quasi-interpolation and the corresponding homogeneous problem is solved using the MFS. By applying quasi-interpolation, problems connected with interpolation can be avoided. The error analysis and convergence study of this meshless method are given for solving the boundary value problems of nonhomogeneous harmonic and biharmonic equations. Numerical examples are also presented to show the efficiency of the method.  相似文献   

12.
13.
研究不可压缩粘性导电流体,流过半无限竖直可渗透平板时,将其偏微分形式的流动和传热的基本控制方程,应用适当的相似变换,简化为非线性的常微分方程组.对两种抽吸参数:大的和小的抽吸参数,采用摄动法得到变换后方程的近似解.数值结果表明,随着磁场参数和抽吸参数的增大,任意点的速度场在减小;磁场参数的影响,引起热边界层厚度的增大;速度和温度场随着热汇参数的增大而减小.  相似文献   

14.
A nonlinear loaded differential equation with a parameter on a finite interval is studied. The interval is partitioned by the load points, at which the values of the solution to the equation are set as additional parameters. A nonlinear boundary value problem for the considered equation is reduced to a nonlinear multipoint boundary value problem for the system of nonlinear ordinary differential equations with parameters. For fixed parameters, we obtain the Cauchy problems for ordinary differential equations on the subintervals. Substituting the values of the solutions to these problems into the boundary condition and continuity conditions at the partition points, we compose a system of nonlinear algebraic equations in parameters. A method of solving the boundary value problem with a parameter is proposed. The method is based on finding the solution to the system of nonlinear algebraic equations composed.  相似文献   

15.
Using the expression of the exact solution to a periodic boundary value problem for an impulsive first-order linear differential equation, we consider an extension to the fuzzy case and prove the existence and uniqueness of solution for a first-order linear fuzzy differential equation with impulses subject to boundary value conditions. We obtain the explicit solution by calculating the solutions on each level set and justify that the parametric functions obtained define a proper fuzzy function. Our results prove that the solution of the fuzzy differential equation of interest is determined, under the appropriate conditions, by the same Green’s function obtained for the real case. Thus, the results proved extend some theorems given for ordinary differential equations.  相似文献   

16.
给出具有两个实自变数的未知函数的线性偏微分方程(组)调和函数解存在的一个充分条件,及在此条件下方程(组)调和函数解的简化求法.  相似文献   

17.
We find a simplest representation for the general solution to the system of the static Lamé equations of isotropic linear elasticity in the form of a linear combination of the first derivatives of three functions that satisfy three independent harmonic equations. The representation depends on 12 free parameters choosing which it is possible to obtain various representations of the general solution and simplify the boundary value conditions for the solution of boundary value problems as well as the representation of the general solution for dynamic Lamé equations. The system of Lamé equations diagonalizes; i.e., it is reduced to the solution of three independent harmonic equations. The representation implies three conservation laws and some formula for producing new solutions which makes it possible, given a solution, to find new solutions to the static Lamé equations by derivations. In the two-dimensional case of a plane deformation, the so-found solution immediately implies the Kolosov-Muskhelishvili representation for shifts by means of two analytic functions of complex variable. Two examples are given of applications of the proposed method of diagonalization of the two-dimensional elliptic systems.  相似文献   

18.
A new general method is developed to obtain the dependence ofthe solution of a non-linear boundary value problem on an arbitraryactual parameter of the problem under consideration. This techniqueis essentially an application of the implicit function theorem(Davidenko's approach) to the solution of non-linear boundaryvalue problems. The procedure suggested requires the integrationof sets of ordinary differential equations (initial value problems)with the right-hand sides obtained from a solution of a certainset of auxiliary differential equations.  相似文献   

19.
With a view toward applications to eigenfunction expansions and spectral asymptotics for partial differential operators with continuous spectra, the authors study the problem of characterizing a solution of a given second-order elliptic linear differential equation by its behavior at a given point. When the elliptic operator is the Laplacian plus lower-order terms, and the coefficients of those terms are sufficiently smooth in the angular directions about the chosen point, the classification of harmonic functions by their local behavior (via spherical harmonics) can be carried over intact to the solutions of the more general equation, because local solutions of the two equations can be placed in one-to-one correspondence. Under this correspondence, the images of the standard basis of harmonic polynomials constitute a basis for expanding every solution that is definable in some neighborhood (no matter how small) of the point.  相似文献   

20.
Flow acoustics in pipeline is of considerable interest in both industrial application and scientific research. While well-known analytical solutions exist for stationary and uniform mean flow, only numerical solutions exist for shear mean flow. Based on potential theory, a general mathematical formulation of flow acoustics in inviscid fluid with shear mean flow is deduced, resulting in a set of two second-order differential equations. According to Fourier–Bessel theory which is orthogonal and complete in Lebesgue Space, a solution is proposed to transform the differential equations to linear homogeneous algebraic equations. Consequently, the axial wave number is numerically calculated due to the existence condition of non-trivial solution to homogeneous linear algebraic equations, leading to the vanishment of the corresponding determinant. Based on the proposed method, wave propagation in laminar and turbulent flow is numerically analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号