首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient single-frequency continuous-wave Nd:YVO4 ring laser pumped at 880 nm is presented. With compact four-mirror ring cavity and optical isolator, we obtained an output power of 14.56 W at 1064 nm, corresponding to a slope efficiency of 61.7% and an optical-to-optical efficiency of 58.4% with respect to the absorbed pump power. The stability of the output power was better than ±0.5% over two hours. At the same time, a beam quality factor of M 2≈1.2 was measured and the line width of the longitudinal mode was about 25 MHz. To the best of our knowledge, this is the highest slope efficiency and optical-to-optical efficiency in single-frequency Nd:YVO4 ring laser.  相似文献   

2.
We report the continuous-wave (CW) operation of a room-temperature a-cut Ho:YAP laser resonantly end-pumped by a diode-pumped Tm:YLF laser at 1.91 μm. A maximum CW output power of 14.6 W at 2118.7 nm for a-oriented Ho:YAP was obtained, corresponding to the slope efficiency of 69.35% and optical-to-optical conversion efficiency of 63.04% with respect to absorbed pump power. The laser operated at a single mode (TEM00) with the beam quality factor of M 2 ∼ 1.51.  相似文献   

3.
J. Cui  Q. Liu  X. Fu  X. Yan  H. Zhang  M. Gong 《Laser Physics》2009,19(10):1974-1976
A MOPA Nd:YAG laser with end-pumped zigzag slab architecture has been developed. 277 W laser output is obtained from the master-oscillator stage, corresponding to the average slope efficiency of 35.9% and the optical conversion efficiency of 34.6%, which emits the maximum power of 402 with 1163 W of pump power. Furthermore, the amplifier stage produces 505 W with the slope efficiency of 24% and the extraction efficiency of 25%. The beam quality is estimated as M x 2 ≈ 10, M y 2 ≈ 50 in the orthogonal directions respectively.  相似文献   

4.
Q-switched operation of a room temperature Ho:YAP laser was resonantly end-pumped by a diode-pumped Tm:YLF laser at 1.91 μm. The CW Ho:YAP laser generated 9.9 W of linearly output at 2119.03 nm with beam quality factor of M 2 ∼1.46 with respect to absorbed pump power of 19.16 W, corresponding to an optical-to-optical conversion efficiency of 51.7% and slope efficiency of 60.6%. Under Q-switched operation, the maximum output power of 9.8 W in relation to 10 kHz pulse repetition frequency (PRF) was obtained, however, the maximum peak power of 60 kW at the PRF of 5 kHz was demonstrated. At 5 kHz pulse energies of 1.92 mJ with pulse width of 32 ns was achieved.  相似文献   

5.
H. Chen  Q. Liu  X. Yan  M. Gong 《Laser Physics》2010,20(7):1594-1597
a high power dual-end-pumped Nd:YVO4 laser with adaptive compensation of thermal lensing effect by adjusting HR mirror along the optical axis was proposed. In Q-switching operation at 70 kHz, the laser worked at different pump power (from 90 W to 70 W) with stable beam quality (M 2 ∼ 1.15) and high output power (from 39 to 28.4 W), corresponding to the absorbed-output conversion efficiency of 55%. In the meantime, the pulse duration was increased from 24 to 31.7 ns. At various repetition rate from 60 to 100 kHz, the beam quality factors were all measured less than 1.2.  相似文献   

6.
Continuous-wave (CW) and Q-switched operation of a room-temperature Ho:LuAG laser was resonantly double-end-pumped by a diode-pumped Tm:YLF laser at 1.91 μm. The CW Ho: LuAG laser generated 24.5 W of linearly output at 2094.4 nm with beam quality factor of M 2 = 1.11 ± 0.02 for an absorbed pump power of 44.0 W, corresponding to optical-to-optical conversion efficiency of 55.7% and slope efficiency of 60.5%. Under Q-switched operation, a maximum output power of 24.1 W with a slope efficiency of 58.1% at 12 kHz was obtained. Also, the minimum pulse width of 32 ns was achieved, corresponding to the peak power was 37.7 kW.  相似文献   

7.
The experimental results of a high-power tunable mid-IR laser are presented. The optical parametric oscillator (OPO) with a 3-mm-thick PPMgCLN crystal was pumped by a 1.064 μm pulse laser. When the pump power of the 1.064 μm laser was 151 W at 10 kHz, and the operating temperature of the PPMgCLN with 5% MgO doping was 100°C, average output power of 23.7 W at 3.91 μm was obtained with a slope efficiency of 18.2% for the idler resonant OPO. The variation of the 3.91 μm output power was about ±4% in 10 min continuous operation. The beam quality factor M 2 was less than 2.6. The average output power of 27.4 W at 3.91 μm was also obtained with 151 W pump power and the slope efficiency of 20.9% for the signal resonant OPO by changing the coating parameters of the OPO cavity mirrors. The mid-IR wavelength tunability of 3.7–4.0 μm can be achieved by adjusting the temperature of a 29 μm period PPMgCLN crystal from 200 to 30°C.  相似文献   

8.
Formed with a flat–flat resonator, a diode-laser-array end-pumped CW Nd:GdVO4 laser at 1.06 μm, capable of generating 8.6 W of TEM00 output power with optical conversion efficiency of 43% and slope efficiency of 48%, has been developed. The laser beam was nearly diffraction limited, with the beam quality factor measured to be M2=1.22. Under the conditions of multi-mode operation, the laser was able to produce 11.2 W of low-order transverse mode radiation (M2<2) at the incident pump power of 22 W, giving an optical conversion efficiency of 51%, and a slope efficiency of 55%.  相似文献   

9.
We report a high power zigzag slab laser oscillator employing two composite Nd:YAG/YAG slab in the cavity. The CW laser output with the power of 401 W was achieved from the oscillator with the optical-optical efficiency of 32.6%. The beam quality is estimated as M x 2 ≈ 10, M y 2 ∼ 50 in the slab width and thickness direction, respectively.  相似文献   

10.
Chaitanya Kumar  S.  Devi  K.  Samanta  G. K.  Ebrahim-Zadeh  M. 《Laser Physics》2011,21(4):782-789
Stable, high-power, second-harmonic-generation (SHG) of a compact CW Ytterbium (Yb) fiber laser at 1064 nm into the green and its use as a pump source for CW singly-resonant optical parametric oscillator (SRO) is demonstrated. Using a simple single-pass SHG configuration in MgO:sPPLT, as much as 9.6 W of single-frequency green radiation at 532 nm is generated from 30 W of fundamental power at a conversion efficiency of 32.7% in a Gaussian spatial profile with a beam quality factor of M 2 < 1.3. Thermal effects have been investigated at different fundamental power levels and various thermal management schemes are employed to maximize the second-harmonic power. The green source is successfully deployed to pump a CW SRO tunable over 855–1408 nm, generating up to 2.1 W of idler at 1168 nm. The peak-to-peak idler power stability is better than 10.7% over 40 min, with beam quality factor M 2 < 1.26 for the idler and M 2 < 1.52 for the signal.  相似文献   

11.
Song  E. Z.  Li  W. H.  You  L. 《Laser Physics》2012,22(4):757-759
The CW 25.6 W output power with a slope efficiency of 30.6% respected to the pump power from a CW single transverse mode all-fiber Tm3+-doped Silica Fiber Laser is reported. The all-fiber laser is made up by progressively splicing the pigtail fiber, matched FBG fiber and Tm fiber. The reflective FBG and Tm3+-doped fiber end Fresnel reflection build up the laser resonance cavity. Due to the multi-mode FBG as the reflective mirror, the output laser spectrum is multi-peaks at high output power, but the spectrum width is less than 2 nm at 1.94 μm. We estimate the beam quality to be M 2 = 2.39, clearly indicating nearly diffraction-limited beam propagation.  相似文献   

12.
We report a CW Ho:YAlO3 (Ho:YAP) laser at room temperature pumped by a Tm:YLF laser with a Volume Bragg Grating (VBG) instead of the conventional mirror. The Ho:YAP laser operated at 2117.9 nm with output power 9.12 W. The optical-to-optical conversion efficiency is 60.4% and slope efficiency is 71.2%. The Ho:YAP output wavelength is centered at 2117.9 nm with bandwidth of about 1 nm. The beam quality factor is M 2 ∼ 1.29 measured by the traveling knife-edge method.  相似文献   

13.
A 2% Tm3+-doped LiYF4(Tm:YLF) slab is double-end-pumped by two laser diode stacks. The pumped volume has a rectangular cross section. The Tm:YLF laser produced 148 W of continuos-wave output at 1912 nm in a beam with M x 2≈199 and M y 2≈1.7 for 554 W of incident pump power. The slope efficiency with respect to the incident pump power was 32.6%, and the optical-to-optical efficiency was 26.7%.  相似文献   

14.
H. Hong  Q. Liu  H. Liu  X. Fu  M. Gong 《Laser Physics》2011,21(5):855-860
A continuous-wave laser with line-shaped end-pumping profile operating at 912 nm is presented. The maximum output power of 7.82 W is obtained, with a slop efficiency of 24.7% and beam quality factors of M x 2 ∼ 20, M y 2 ∼ 1.3. To the best of our knowledge, this is the first laser diode bar directly pumped Nd:GdVO4 slab laser based on the quasi-three-level 4 F 3/24 F 9/2 transition in neodymium. Furthermore, we disclose that the experimental setups can be improved by inserting a plano-concave cylindrical lens in the cavity to form a new quasi-concentric resonator to improve die mode-matching in x-direction.  相似文献   

15.
刘欢  巩马理 《中国物理 B》2012,21(2):24207-024207
A fiber-coupled laser-diode (LD) end-pumped Nd:GdVO4 slab continuous-wave (CW) 912-nm laser and an LD bar end-pumped Nd:GdVO4 slab CW 912-nm laser are both demonstrated in this paper. Using the fiber-coupled LD of end-pumped type, a highest CW 912-nm laser output power of 10.17 W is obtained with a high optical-to-optical conversion efficiency of 24.6% and a slope efficiency of 34.5%. The measured M2 factors of beam quality in x and y directions are 5.3 and 5.1, respectively. Besides, an LD bar of end-pumped type is used to realize CW 912-nm laser output, which has the advantages of compactness and low cost. When the pump power is 38.8 W, the output power is 8.87 W and the measured M2 factors of beam quality in x and y directions are 16 and 1.31, respectively. In order to improve the beam quality of the 912-nm laser at x direction, a new quasi-concentric laser resonator will be designed, and an LD bar end-pumped Nd:GdVO4 slab high-power CW 912-nm TEM00 laser will be realized in the future.  相似文献   

16.
We reported a 30 W average output power 532 nm green laser with 5 ns pulsed duration working at 80–100 kHz generated by a hybrid MOPA system. The hybrid MOPA system consisted of a fiber amplifier and two solid-state amplifiers producing 77 W 1064 nm at pulse repetition rates of 80–100 kHz. The IR-to-green optical conversion efficiency was 44.7% at the working point of 100 kHz. The beam quality of green laser was measured better than M 2 < 1.6 in both orthogonal directions. Nanosecond 532 nm lasers with short pulsed duration could be practicable in silicon-based material processing in the Photovoltaic industry.  相似文献   

17.
A diode-laser-array end-pumped efficient CW Nd:GdVO4 laser at 1.06 μm has been developed. A low-order-mode output power of 14.3 W was obtained at the maximum available pump power of 26 W, giving an optical conversion efficiency of 55% and an average slope efficiency of 62%. The laser output beam quality factor at full pump power was determined to be M2<1.8. It is also shown that only lightly doped Nd:GdVO4 crystals are suitable for high-power end-pumped lasers. Received: 4 May 1999 / Published online: 29 July 1999  相似文献   

18.
A c-cut Tm:YAP laser which operated at 1.94 or 1.99 μm is reported in detail. The maximum output power was 20.4 and 19.8 W at the wavelength around 1.99 and 1.94 μm, corresponding to the slope efficiency of 34.3 and 31.5%, respectively. For 1.94 μm operation, with an F-P etalon inserted in the cavity, the output central wavelength was stable around 1.94 μm with about 0.15 nm linewidth. The beam quality factor M 2 was measured to be ∼1.8 for 1.99 μm and ∼1.9 for 1.94 μm.  相似文献   

19.
A high-power diode -pumped Nd3+:YAl3(BO3)4 (Nd:YAB) laser emitting at 1338 nm is described. At the incident pump power of 9.8 W, as high as 734 mW of continuous-wave (CW) output power at 1338 nm is achieved. The slope efficiency with respect to the incident pump power was 9.0%. To the best of our knowledge, this is the first demonstration of such a laser system. The output power stability over 60 min is better than 2.6%. The laser beam quality M 2 factor is 1.21.  相似文献   

20.
D. Z. Yang  W. Liu  T. Chen  W. Ye  Y. H. Shen 《Laser Physics》2010,20(8):1752-1755
We report a linearly polarized Tm doped fiber laser. The fiber laser was set up by using a piece of polarization maintaining Tm doped double clad fiber of 5 m length as gain medium and a polarization beam splitter as a polarization selector. The fiber laser was pumped by a fiber pigtailed laser diode working at 790 nm with a maximum output power of 90 W. The linearly polarized Tm laser operated at wavelength around 2030 nm. A maximum output power up to 21.9 W was achieved when the pump power was 63.27 W with a threshold of 11.92 W, a slope efficiency of about 43.7%, and a polarization extinction ratio of 92.7% (11.37 dB). In addition to the blue fluorescence, we also observed the violet fluorescence under high pump power level. The up-conversion fluorescence was considered to be attributed to the 1 G 43 H 6, and 1 D 23 F 4 transitions of Tm ions, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号