首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate a tunable, narrow linewidth, linearly polarized and gain-switched Cr2+:ZnSe laser pumped by a Tm, Ho:YVO4 laser at 10 kHz pulse repetition frequency. By setting a quartz birefringent filter with a Brewster angle in the cavity, the linearly polarized Cr2+:ZnSe laser can be continuously tuned from 2.45 to 2.50 μm, and the output power was almost not changed. In addition, the linewidth was compressed to about 5 nm. At the incident pump power to the crystal of 14 W, the maximum output power of 2.84 W was obtained, corresponding to a slope efficiency of 20.4%.  相似文献   

2.
In this paper, we report a 22.7 W continuous wave (CW) diode-pumped cryogenic Ho( at %), Tm(3 at %):GdVO4 laser. The pumping sources of Ho,Tm:GdVO4 laser are two fiber-coupled laser diodes with fiber core diameter of 0.4 mm, both of them can supply 42 W power laser operating near 802 nm. For input pump power of 64.7 W at 802.5 nm, the output power of 22.7 W in CW operation, optical-to-optical conversion efficiency of 35.1% at 2.05 μm has been attained. The M 2 factor was found to be 2.0 under an output power of 16.5 W.  相似文献   

3.
We demonstrate a tunable, narrow linewidth, linearly polarized and gain-switched Cr2+:ZnSe laser pumped by a Tm, Ho:YVO4 laser at 10 kHz pulse repetition frequency. By setting a quartz birefringent filter with a Brewster angle in the cavity, the linearly polarized Cr2+:ZnSe laser can be continuously tuned from 2.45 to 2.50 μm, and the output power was almost not changed. In addition, the linewidth was compressed to about 5 nm. At the incident pump power to the crystal of 14 W, the maximum output power of 2.84 W was obtained, corresponding to a slope efficiency of 20.4%.  相似文献   

4.
We report a continuous-wave singly resonant optical parametric oscillator (SRO) with more than 12 W of idler power at 3414 nm when it was operated at 30°C. The SRO was directly pumped by a single-frequency, ytterbium-doped fiber laser with 49 W linear polarization pump powers, and based on 50 mm long periodically poled MgO:LiNbO3 crystal (PPMgLN) in two-mirror linear cavity with 30.5 μm grating period. It’s pump power at threshold was 5.4 W. The slope-efficiency and quantum-limited performance reached 26 and 79.2%, respectively. The beam polarization matched the ee + e interaction in crystal. The idler waves were temperature tuned in the range of 3654 to 3811 nm and 3248 to 3414 nm based on two 50 mm long PPMgLN with 29.5 and 30.5 μm grating period. To the best of our knowledge, this is the highest continuouswave mid-IR output obtained for a fiber laser pumped optical parametric oscillator (OPO).  相似文献   

5.
R. M. El-Agmy 《Laser Physics》2010,20(11):1990-1993
We report for the first time continuous wave (CW) red laser emission in Tm+3-doped ZBLAN fiber laser, operated at 650 nm (1 G 43 F 4 transition of Tm+3). The excitation uses a three step upconversion scheme. The pump source is a Nd:YAG laser operated at 1.064 μm. A laser output power of CW 80 mW was obtained for 1.42 W of launched pump power. The slope efficiency with respect to launched pump power was measured to be 7.7%. The temporal behavior of the emitted laser is also addressed.  相似文献   

6.
Zhang  Z.  Ruan  N. J.  Zhou  F.  Liu  Z. J.  Xu  L. J. 《Laser Physics》2011,21(6):1078-1080
A high power continuous wave diode-pumped Tm:YAP laser at room temperature was presented in this paper. The Tm:YAP crystal with doped concentration of 3 at % for the experiment was c-cut with dimensions of 3 × 3 × 8 mm3. A 795 nm continuous wave laser diode in dual-end-pumped geometry was used to generate 1.94 μm laser output. At the pump power of 38.9 W, the highest output power reached 12.3 W by use of 15% output coupling, corresponding to optical conversion efficiency was 31.6% and the slope efficiency was 38.2%.  相似文献   

7.
We describe efficient operation of a Ho:LuAG laser in-band pumped by a cladding-pumped narrow linewidth Tm fiber laser at ∼1907 nm. With 1.0 at % Ho3+-doped LuAG and an output coupler of 6% transmission, the laser had a threshold pump power of ∼0.85 W and generated 18.04 W of continuous-wave output power at 2124.5 nm for 35 W of incident pump power, corresponding to an average slope efficiency with respect to incident pump power of 53.4%.  相似文献   

8.
A 2% Tm3+-doped LiYF4(Tm:YLF) slab is double-end-pumped by two laser diode stacks. The pumped volume has a rectangular cross section. The Tm:YLF laser produced 148 W of continuos-wave output at 1912 nm in a beam with M x 2≈199 and M y 2≈1.7 for 554 W of incident pump power. The slope efficiency with respect to the incident pump power was 32.6%, and the optical-to-optical efficiency was 26.7%.  相似文献   

9.
Sh. Han  W. Han  X. Tian  J. Liu  H. Yu  H. Zhang 《Laser Physics》2010,20(10):1868-1870
Efficient continuous-wave (CW) laser operation on the 4 F 3/24 I 9/2 transition of Nd:Y0.53Gd0.47VO4, a mixed vanadate crystal, is demonstrated at room temperature employing a compact plano-concave resonator, generating a polarized output power of 0.39 W at 913.2 nm with 2.85 W of pump power absorbed, the optical-to-optical and slope efficiencies being 14 and 25%, respectively.  相似文献   

10.
The continuous-wave high efficiency laser emission of Nd:YAG at the fundamental wavelength of 1319 nm and its 659.5-nm second harmonic obtained by intracavity frequency doubling with an LBO nonlinear crystal is investigated under pumping by diode laser at 885 nm (on the 4 F 3/24 I 13/2 transition). An end-pumped Nd:YAG crystal yielded 9.1 W at 1319 nm of continuous-wave output power for 18.2 W of absorbed pump power. The slope efficiency with respect to the absorbed pump power is 0.55. Furthermore, 5.2 W 659.5 nm red light is acquired by frequency doubling, resulting in an optical-to-optical efficiency with respect to the absorbed pump power of 0.286. Comparative results obtained for the pump with diode laser at 808 nm (on the 4 F 5/24 I 13/2 transition) are given in order to prove the advantages of the 885 nm wavelength pumping.  相似文献   

11.
We reported a 26 W linearly polarized single-mode Yb-doped photonic crystal fiber amplifier, working at 80 kHz repetition rate with 4.5 ns duration, corresponding 72 kW peak power. Using a acousto-optic Q-switched Nd:YVO4 laser as the seed source, the 26 W average power of 1064 nm laser was obtained at a repetition rate of 80 kHz from a Yb-doped photonic crystal fiber amplifier, with 4.5 ns duration, polarization extinction ratio 11 dB and M 2 < 1.2.  相似文献   

12.
A high-power, continuous-wave 3.5% Tm3+ doped LiYF4 (Tm:YLF) laser has been developed. Using two Tm:YLF rods in a single cavity, 55 W of laser output at 1910 nm was obtained with a slope efficiency of 49%. The M2 factor was found to be <3. With a single Tm:YLF rod, a maximum laser power of 30 W was obtained with a slope efficiency of 50%. The laser was tuned to the peak absorption wavelength of Ho:YAG of 1907.5 nm by an intracavity quartz etalon with an output power loss < 1 W. PACS 42.55.-f; 42.55.Xi; 42.60.Pk  相似文献   

13.
A high efficient continuous wave diode-pumped Tm:YAP laser at room temperature was presented in this paper. Tm:YAP crystal with doped concentration of 4 at % was c-cut and had a cross section of 3 × 3 mm2 and length of 5 mm. Using double-passing-pumped cavity structure, under the pump power was 25.5 W, the highest output power reached 8.5 W by use of 10% output coupling, corresponding to optical conversion efficiency was 33.3% and the slope efficiency was 44.5%. The laser wavelength was 1936 nm with FWHM of 4 nm.  相似文献   

14.
In this paper, we report a 18.8 W continuous wave and 18.4 W Q-switched diode-pumped cryogenic Tm(5 at %), Ho(0.5 at %):GdVO4 laser. The pumping source of Tm, Ho:GdVO4 laser is a fiber-coupled laser diode with fiber core diameter of 0.4 mm, supplying 42 W power at 802.5 nm. For input pump power of 41.9 W at 802.4 nm, the output power of 18.8 W in CW operation, optical-to-optical conversion efficiency of 45% at 2.05 μm and the average output power of 18.4 W in Q-switched operation, optical-to-optical conversion efficiency of 44% at 2.04 and 2.05 μm have been attained. The emission wavelengths of the Tm(5 at %), Ho(0.5 at %):GdVO4 laser were firstly compared when it worked in CW mode and Q-switched mode.  相似文献   

15.
Q-switched operation of a room temperature Ho:YAP laser was resonantly end-pumped by a diode-pumped Tm:YLF laser at 1.91 μm. The CW Ho:YAP laser generated 9.9 W of linearly output at 2119.03 nm with beam quality factor of M 2 ∼1.46 with respect to absorbed pump power of 19.16 W, corresponding to an optical-to-optical conversion efficiency of 51.7% and slope efficiency of 60.6%. Under Q-switched operation, the maximum output power of 9.8 W in relation to 10 kHz pulse repetition frequency (PRF) was obtained, however, the maximum peak power of 60 kW at the PRF of 5 kHz was demonstrated. At 5 kHz pulse energies of 1.92 mJ with pulse width of 32 ns was achieved.  相似文献   

16.
Cryogenic temperature operation of a c-cut Tm(5%),Ho(0.3%):YAlO3 laser end-pumping by a fiber-coupled laser-diode is reported. A 2.55 W incident pump power is used to generate 160 mW of laser output, representing a 7.1% optical-to-optical conversion efficiency respect to the incident pump power. In the experiment, three wavelengths—2.04, 2.10, and 2.13 μm oscillation have been observed simultaneously, which is agreement with the inherent a-axis polarization fluorescence spectra of Tm,Ho:YAlO3. Also single wavelength oscillation performance has been observed which is centered at 2.13 μm.  相似文献   

17.
Continuous-wave (CW) and Q-switched operation of a room-temperature Ho:LuAG laser was resonantly double-end-pumped by a diode-pumped Tm:YLF laser at 1.91 μm. The CW Ho: LuAG laser generated 24.5 W of linearly output at 2094.4 nm with beam quality factor of M 2 = 1.11 ± 0.02 for an absorbed pump power of 44.0 W, corresponding to optical-to-optical conversion efficiency of 55.7% and slope efficiency of 60.5%. Under Q-switched operation, a maximum output power of 24.1 W with a slope efficiency of 58.1% at 12 kHz was obtained. Also, the minimum pulse width of 32 ns was achieved, corresponding to the peak power was 37.7 kW.  相似文献   

18.
Song  E. Z.  Li  W. H.  You  L. 《Laser Physics》2012,22(4):757-759
The CW 25.6 W output power with a slope efficiency of 30.6% respected to the pump power from a CW single transverse mode all-fiber Tm3+-doped Silica Fiber Laser is reported. The all-fiber laser is made up by progressively splicing the pigtail fiber, matched FBG fiber and Tm fiber. The reflective FBG and Tm3+-doped fiber end Fresnel reflection build up the laser resonance cavity. Due to the multi-mode FBG as the reflective mirror, the output laser spectrum is multi-peaks at high output power, but the spectrum width is less than 2 nm at 1.94 μm. We estimate the beam quality to be M 2 = 2.39, clearly indicating nearly diffraction-limited beam propagation.  相似文献   

19.
We report a low-threshold continuous-wave Tm:YAG laser that can be excited near 785?nm with low-cost, single-mode AlGaAs laser diodes. Low-threshold operation was achieved using a tightly focused, astigmatically compensated x-cavity containing a 2-mm-thick Tm:YAG crystal with 5?% Tm3+ concentration. Two linearly polarized single-mode diodes operating at 785.8?nm were polarization coupled to end pump the resonator. With a 6?% output coupler, as high as 32?mW of output power could be obtained at 2016?nm with 184?mW of incident pump power. The output could be further tuned in the 1935?C2035?nm range. Slope efficiency measurements indicated that cross-relaxation was very effective at this doping level. With a 2?% output coupler, lasing could be obtained with as low as 32.3?mW of pump power. In the limit of vanishing output coupling, the incident threshold pump power could be reduced to as low as 25?mW. To our knowledge, this is among the lowest lasing thresholds reported to date for continuous-wave, room-temperature thulium lasers.  相似文献   

20.
LD端面抽运Nd:YAG 1319/1338nm双波长激光器研究   总被引:1,自引:0,他引:1       下载免费PDF全文
刘欢  姚建铨  郑芳华  路洋  王鹏 《物理学报》2008,57(1):230-237
从LD端面抽运固体激光器的激光阈值公式出发,建立了双波长激光同时振荡的阈值条件,理论计算了腔镜对于两个波长的透过率关系,实现了LD端面抽运Nd:YAG 1319nm/1338nm双波长激光连续和准连续输出.双波长激光连续输出功率可达6W,斜效率为30%;准连续输出功率在重复频率50kHz时可达4.75W,斜效率为24.73%,脉冲宽度为55.05ns;腔内插入布儒斯特片,在重复频率为50kHz时,双波长激光准连续线偏振输出功率可达2.22W,不稳定性小于0.52%,M2 关键词: 端泵Nd:YAG激光器 1319nm/1338nm双波长 声光调Q 太赫兹波  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号