首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Optical orientation of electrons was used to polarize the crystal lattice nuclei in quantum-size heterostructures and to study the effect of the conduction band spin splitting on the spin states of quasi-two-dimensional (2D) electrons drifting in an external electric field. High (~1%) nuclear polarization was registered using polarized luminescence and ODNMR in single GaAs/AlGaAs quantum wells. Measurement was made of the hyperfine interaction fields created by polarized nuclei on electrons and by electrons on nuclei. The spin-lattice relaxation of nuclei on the non-degenerate 2D electron gas was calculated. A comparison of the theoretical and experimental longitudinal relaxation times permitted the conclusion that the localized charge carriers are responsible for nuclear polarization in quantum wells in the temperature range of 2–77 K. A new effect has been studied, i.e. induction of an effective magnetic field acting on 2D electron spins when electrons drift in an external electric field in the quantum well plane. This effective field Beff is due to the spin splitting of the conduction band of 2D electrons. The paper discusses possible registration of an ODNMR signal when the field Beff is modulated by an electric current during optical orientation.  相似文献   

2.
3.
Radiation-detected optical pumping in solids has been developed to investigate the structure of unstable nuclei. Appreciable nuclear polarization of implanted or doped unstable-nuclei in a host crystal is achieved with the optical pumping in solids. The nuclear polarization achieved is enhanced/reduced by applying a radio-frequency magnetic field together with the optical pumping, radiation-detected magnetic resonance being thus observed to get information on electromagnetic properties of unstable nuclei. Two schemes have been successfully developed for the optical pumping of unstable nuclei in solids. One is to directly pump the atoms by the excitation from the ground state to a broad absorption band in visible and UV regions which shows a large magnetic circular dichroism. This scheme is applicable to many rare-earth atoms in alkaline-earth fluoride host. The other scheme is to pump the electrons in the conduction band of direct-type semiconductor and thus indirectly polarize the nuclei in the host material via a hyperfine interaction between the nuclei and the polarized conduction electrons. This scheme can be especially applied to the III to VI families of atoms in direct-type semiconductors. Principle of the methods, on-line experimental system, and a few examples of the results obtained so far are presented and discussed.  相似文献   

4.
The discussion of the fine splitting of the MnI atoms resonant curve based on the new spin echo measurements shows that this splitting is caused by the nitrogen vacancies in the second co-ordination sphere of the MnI atoms. All the hitherto known properties of both the coarse and the fine splitting of the MnI atoms resonant curves were explained by the interaction of the nuclei with the additionally polarized conduction electrons. The numerical estimation of the linear relation between the hyperfine field and magnetic moment of MnII atoms variation gives the valueΔB ef/Δμ≈ ?0·92T/μ B.  相似文献   

5.
Room-temperature spin-dependent recombination in a series of GaAs1?xNx solid solutions (x = 2.1, 2.7, 3.4%) has been observed as manifested by a more than threefold decrease in intensity of the edge photoluminescence upon switching from circular to linear polarization of the exciting light or upon the application of a transverse magnetic field (~300 G). The interband absorption of the circularly polarized light is accompanied by the spin polarization of conduction electrons, which reaches 35% with an increase in the pumping level. The observed effects are explained in terms of the dynamic polarization of deep paramagnetic centers and the spin-dependent trapping of conduction electrons on these centers. The electron spin relaxation time, as estimated from the dependence of the edge photoluminescence depolarization in the transverse magnetic field (the Hanle effect) on the pumping intensity, is on the order of 1 ns. According to the adopted theory, the electron spin relaxation time in the presence of spin-dependent recombination is determined by a slow spin relaxation of localized electrons. The sign (positive) of the g factor of localized electrons has been experimentally determined from the direction of the magnetic-field-induced rotation of their average spin observed in the three GaAsN crystals studied.  相似文献   

6.
X-ray diffraction, Mössbauer spectroscopy and magnetization measurements were used as complementary methods to obtain structural data and to determine magnetic properties of the mechanically synthesized and subsequently thermally treated Co-Fe-Ni alloys. New, however approximate, phase diagrams were established on the basis of X-ray diffraction investigations. Mössbauer spectroscopy and magnetization measurements allowed to reveal practically linear correlation between the average values of the hyperfine magnetic field induction, 〈Bhf〉, and the effective magnetic moments, μeff, of the alloys. The decrease in 〈Bhf〉 with the number of electrons per atom, e/a, was observed. Moreover, the dependence of μeff on the valence 3d and 4s electrons per atom follows the Slater-Pauling curve. Thermal treatment of mechanosynthesized Co-Fe-Ni alloys led to some changes in the phase diagrams, increase in the grain size and decrease of the level of internal strains in alloys. Dependencies of lattice constants, average hyperfine magnetic fields, effective magnetic moments and Curie temperatures on the number of electrons per atom have the same trends for mechanically synthesized as well as for thermally treated alloys.  相似文献   

7.
Dual-frequency optical pumping for spin-polarizing a lithium atomic beam   总被引:1,自引:0,他引:1  
A lithium-6 atomic beam is spin-polarized by means of optical pumping with a single-mode dye laser operating on the resonance transition. Simultaneous pumping of both hyperfine substates is achieved by frequency-splitting the laser light with an acousto-optic modulator. A polarization dependent signal, obtained by probing the optical activity of the beam with linearly polarized light, is utilized in a microprocessor-controlled laser stabilization scheme. The polarization is analyzed with a sextupole magnet and its overall value is 0.70 for an intensity of 1×1014 atms s−1. By reversing the sense of circular polarization of the pumping light the atomic beam polarization is easily reversed in direction.  相似文献   

8.
The197Au(n, γ) reaction was studied with the aid of polarized thermal neutron beams. Two kinds of experimental data were obtained: i) circular polarization of gamma rays of high energy due to capture of polarized neutrons by unoriented197Au nuclei, and ii) angular distribution of such gamma rays observed after capture of polarized neutrons by polarized197Au nuclei. Spins of several levels of198Au could be uniquely assigned or could be restricted. The sign of the hyperfine field of Au in AuFe has been determined to be negative.  相似文献   

9.
Theoretical calculation of 85Rb and 133Cs D1 signals in polarization spectroscopy is presented by using the method of velocity-selective optical pumping in a four-level system. Since good agreement between theory and experiment has been found in Na D1 polarized signals, the theoretical calculation can be also applied to Rb and Cs D1 lines. Rb and Cs atoms have higher total angular momentum F in the hyperfine structures than Na atom and then the calculation is more complicated. The relative signal intensities in polarization spectroscopy are compared with those in saturation spectroscopy.  相似文献   

10.
铯饱和吸收光谱随抽运光强度的变化   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了铯饱和吸收光谱随抽运光强度变化的情况,特别是61/2F=4→63/2F′=5的谱线的变化行为.在线偏振光抽运、线偏振光检测的情况下,计入所有相关的Zeeman子能级之间的跃迁,考虑光抽运与饱和效应的共同作用,运用Runge-Kuta法则求解粒子数方程,计算得出的饱和吸收谱与实验结果符合得较好.还给出了较直观的物理解释 关键词:  相似文献   

11.
The mutual coupling between the polarization moments with ranks of different parity is theoretically considered. The manifestation of this mutual coupling has been revealed previously in experiments on magnetic resonance of optically oriented cesium atoms. The two well-known types of the coupling between the polarization moments are considered: the field coupling of these moments that occur due to the breaking of the hyperfine coupling between the electronic and nuclear moments of the alkali atom by the magnetic field and the light coupling of the moments due to the absorption of the pumping light by polarized atoms. The experimentally observed similarity in the shape of resonance signals of alignment and orientation upon circularly polarized pumping can be explained by the fact that, for alkali atoms, the generation of alignment by light at the wavelength of the D 1 line is of low efficiency. Therefore, alignment arises mainly from orientation by means of either the field or the light coupling of polarization moments. For metastable 23 S 1 4He atoms, no influence of the orientation on the alignment was observed because, in these atoms, the field coupling between the polarization moments is absent and the light coupling is not displayed because the generation of alignment by the circularly polarized pumping light is more efficient than the creation of alignment from orientation by means of light coupling of polarization moments.  相似文献   

12.
Nuclear magnetic resonance on oriented nuclei (NMR-ON) on 59Fe isotope in Ni was performed. The magnetic hyperfine splitting frequency of was determined to be ν(B 0?=?0)?=?48.32 (2) MHz. Using the known magnetic moment the magnetic hyperfine field was deduced as B HF?=???28.32 (5) T. The effective nuclear spin-lattice relaxation time was also measured. The measured value is compared with experimental values of 3d-impurity in nickel host.  相似文献   

13.
The nuclear spin dynamics in an asymmetrically doped 16-nm AlAs quantum well grown along the [001] direction has been studied experimentally using the time decay of the Overhauser shift of paramagnetic resonance of conduction electrons. The nonzero spin polarization of nuclei causing the initial observed Overhauser shift is due the relaxation of the nonequilibrium spin polarization of electrons into the nuclear subsystem near electron paramagnetic resonance owing to the hyperfine interaction. The measured relaxation time of nuclear spins near the unity filling factor is (530 ± 30) min at the temperature T = 0.5 K. This value exceeds the characteristic spin relaxation times of nuclei in GaAs/AlGaAs heterostructures by more than an order of magnitude. This fact indicates the decrease in the strength of the hyperfine interaction in the AlAs quantum well in comparison with GaAs/AlGaAs heterostructures.  相似文献   

14.
We have studied the magnetic cluster compound Nb6F15 which has an odd number of 15 valence electrons per (Nb6F12)3+ cluster core, as a function of temperature using nuclear magnetic resonance, magnetic susceptibility, electron magnetic resonance and neutron powder diffraction. Nuclear magnetic resonance of the 19F nuclei shows two lines corresponding to the apical Fa?a nucleus, and to the inner Fi nuclei. The temperature dependence of the signal from the Fi nuclei reveals an antiferromagnetic ordering at T < 5 K, with a hyperfine field of ~2 mT. Magnetic susceptibility exhibits a Curie–Weiss behavior with T N ~5 K, and μ eff ~1.57 μB close to the expected theoretical value for one unpaired electron (1.73 μB). Electron magnetic resonance linewidth shows a transition at 5 K. Upon cooling from 10 to 1.4 K, the neutron diffraction shows a decrease in the intensity of the low-angle diffuse scattering below Q ~0.27 Å?1. This decrease is consistent with emergence of magnetic order of large magnetic objects (clusters). This study shows that Nb6F15 is paramagnetic at RT and undergoes a transition to antiferromagnetic order at 5 K. This unique antiferromagnetic ordering results from the interaction between magnetic spins delocalized over each entire (Nb6F 12 i )3+ cluster core, rather than the common magnetic ordering.  相似文献   

15.
Spin interactions are studied between conduction band electrons in GaAs heterostructures and local moments, specifically the spins of constituent lattice nuclei and of partially filled electronic shells of impurity atoms. Nuclear spin polarizations are addressed through the contact hyperfine interaction resulting in the development of a method for high-field optically detected nuclear magnetic resonance sensitive to 108 nuclei. This interaction is then used to generate nuclear spin polarization profiles within a single parabolic quantum well; the position of these nanometer-scale sheets of polarized nuclei can be shifted along the growth direction using an externally applied electric field. In order to directly investigate ion spin dynamics, doped GaMnAs quantum wells are fabricated in the regime of very low Mn concentrations. Measurements of coherent electron spin dynamics show an antiferromagnetic exchange between s-like conduction band electrons and electrons localized in the d-shell of the Mn impurities, which varies as a function of well width.  相似文献   

16.
Spin-dependent recombination is observed in Ga0.6Al0.4As at 77°K on the intensity of the donor-acceptor pairs photoluminescence. The lifetime is enhanced by a factor 2.3 when photocreated electrons and recombination centers are spin polarized by optical pumping with circularly polarized light. Optical orientation and spin-dependent recombination lead to a steady-state electronic spin polarization as large as 70%.  相似文献   

17.
Hyperpolarized nuclear spins are observed in optically pumped iron-doped InP from 70 K to 140 K. 31P NMR was carried out at 9.28 T (159.8 MHz) during optical excitation with circularly polarized light, using a laser diode (λ∼830 nm) as a source. The enhancement of the nuclear spin polarization by optical pumping at 70 K is estimated to be about 34 for those nuclei in the region of the sample absorbing light. This enhancement decreases with increasing temperature. As the direction of the enhanced nuclear spin polarization is found parallel or antiparallel to the travelling direction of the σ+ or σ, the contact hyperfine interaction is dominant compared to the dipolar hyperfine interaction.  相似文献   

18.
Nuclear resonance reflectivity from a [Dy19Gd19] × 20 superlattice has been measured utilizing the 25.652 keV nuclear level of 161Dy. The measured time spectra of nuclear resonance reflectivity make it possible to reveal the variation of the hyperfine magnetic field Bhf on dysprosium nuclei in the temperature range of 4–110 K and to determine the relaxation time of the hyperfine field, using the decay speed-up of the excited state of 161Dy nuclei.  相似文献   

19.
The selective reflection of laser radiation from the interface between a dielectric window and the atomic vapors confined in a nanocell of thickness L ≈ 350 nm is used to develop effective Doppler-broadening- free spectroscopy of potassium atoms. A small atomic line width and a relation between the signal intensity and the transition probability allowed us to resolve four lines of atomic transitions responsible for the D1 lines of the 39K and 41K isotopes. Two groups containing four atomic transitions form in an applied magnetic field upon pumping by radiation with circular polarization σ+ or σ. Different intensities (probabilities) of transitions for the σ+ and σ excitations are detected in magnetic field B0A hfs B ≈ 165 G (A hfs is the magnetic dipole constant for the ground state and μB is the Bohr magneton). A substantially different situation is observed at B ? B0, since high symmetry appears for the two groups formed by radiation with circular polarization σ+ or σ. Each group is the mirror image of the other group with respect to the frequency of the 42S1/2–42P1/2 transition, which additionally proves the occurrence of the complete Paschen–Back regime of the hyperfine structure at B ≈ 2.5 kG. A developed theoretical model well reproduces the experimental results. Possible practical applications are described. The results obtained can also be applied to the D1 lines of 87Rb and 23Na.  相似文献   

20.
A new coordination parameter Zeff is defined at each inequivalent iron site in the interstitial iron-metalloid ferromagnetic metals which uniquely determines the hyperfine field at that site with considerable accuracy. The dependence of Zeff upon bonding lenghts is defined and can be directly used to generate hyperfine field distributions for amorphous aggregates. It thereby promises to provide a fairly quantitative bridge between computer models and hyperfine field probes in iron metglasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号