首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
On simultaneous approximation by lagrange interpolating polynomials   总被引:1,自引:0,他引:1  
This paper considers to replace △_m(x)=(1-x~2)~2(1/2)/n +1/n~2 in the following result for simultaneousLagrange interpolating approximation with (1-x~2)~2(1/2)/n: Let f∈C_(-1.1)~0 and r=[(q+2)/2],then|f~(k)(x)-P_~(k)(f,x)|=O(1)△_(n)~(a-k)(x)ω(f~(a),△(x))(‖L_n-‖+‖L_n‖),0≤k≤q,where P_n( f ,x)is the Lagrange interpolating polynomial of degree n+ 2r-1 of f on the nodes X_nU Y_n(see the definition of the text), and thus give a problem raised in [XiZh] a complete answer.  相似文献   

2.
We consider the question of evaluating the normalizing multiplier $$\gamma _{n,k} = \frac{1}{\pi }\int_{ - \pi }^\pi {\left( {\frac{{sin\tfrac{{nt}}{2}}}{{sin\tfrac{t}{2}}}} \right)^{2k} dt} $$ for the generalized Jackson kernel J n,k (t). We obtain the explicit formula $$\gamma _{n,k} = 2\sum\limits_{p = 0}^{\left[ {k - \tfrac{k}{n}} \right]} {( - 1)\left( {\begin{array}{*{20}c} {2k} \\ p \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {k(n + 1) - np - 1} \\ {k(n - 1) - np} \\ \end{array} } \right)} $$ and the representation $$\gamma _{n,k} = \sqrt {\frac{{24}}{\pi }} \cdot \frac{{(n - 1)^{2k - 1} }}{{\sqrt {2k - 1} }}\left[ {1\frac{1}{8} \cdot \frac{1}{{2k - 1}} + \omega (n,k)} \right],$$ , where $$\left| {\omega (n,k)} \right| < \frac{4}{{(2k - 1)\sqrt {ln(2k - 1)} }} + \sqrt {12\pi } \cdot \frac{{k^{\tfrac{3}{2}} }}{{n - 1}}\left( {1 + \frac{1}{{n - 1}}} \right)^{2k - 2} .$$ .  相似文献   

3.
In this paper, we establish two families of approximations for the gamma function: $$ \begin{array}{lll} {\varGamma}(x+1)&=\sqrt{2\pi x}{\left({\frac{x+a}{{\mathrm{e}}}}\right)}^x {\left({\frac{x+a}{x-a}}\right)}^{-\frac{x}{2}+\frac{1}{4}} {\left({\frac{x+b}{x-b}}\right)}^{\sum\limits_{k=0}^m\frac{{\beta}_k}{x^{2k}}+O{{\left(\frac{1}{x^{2m+2}}\right)}}},\\ {\varGamma}(x+1)&=\sqrt{2\pi x}\cdot(x+a)^{\frac{x}{2}+\frac{1}{4}}(x-a)^{\frac{x}{2}-\frac{1}{4}} {\left({\frac{x-1}{x+1}}\right)}^{\frac{x^2}{2}}\\ &\quad\times {\left({\frac{x-c}{x+c}}\right)}^{\sum\limits_{k=0}^m\frac{{\gamma}_k}{x^{2k}}+O{\left({\frac{1}{x^{2m+2}}}\right)}}, \end{array}$$ where the constants ${\beta }_k$ and ${\gamma }_k$ can be determined by recurrences, and $a$ , $b$ , $c$ are parameters. Numerical comparison shows that our results are more accurate than Stieltjes, Luschny and Nemes’ formulae, which, to our knowledge, are better than other approximations in the literature.  相似文献   

4.
Let S j : (Ω, P) → S 1 ? ? be an i.i.d. sequence of Steinhaus random variables, i.e. variables which are uniformly distributed on the circle S 1. We determine the best constants a p in the Khintchine-type inequality $${a_p}{\left\| x \right\|_2} \leqslant {\left( {{\text{E}}{{\left| {\sum\limits_{j = 1}^n {{x_j}{S_j}} } \right|}^p}} \right)^{1/p}} \leqslant {\left\| x \right\|_2};{\text{ }}x = ({x_j})_{j = 1}^n \in {{\Bbb C}^n}$$ for 0 < p < 1, verifying a conjecture of U. Haagerup that $${a_p} = \min \left( {\Gamma {{\left( {\frac{p}{2} + 1} \right)}^{1/p}},\sqrt 2 {{\left( {{{\Gamma \left( {\frac{{p + 1}}{2}} \right)} \mathord{\left/ {\vphantom {{\Gamma \left( {\frac{{p + 1}}{2}} \right)} {\left[ {\Gamma \left( {\frac{p}{2} + 1} \right)\sqrt \pi } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {\Gamma \left( {\frac{p}{2} + 1} \right)\sqrt \pi } \right]}}} \right)}^{1/p}}} \right)$$ . Both expressions are equal for p = p 0 }~ 0.4756. For p ≥ 1 the best constants a p have been known for some time. The result implies for a norm 1 sequence x ∈ ? n , ‖x2 = 1, that $${\text{E}}\ln \left| {\frac{{{S_1} + {S_2}}}{{\sqrt 2 }}} \right| \leqslant {\text{E}}\ln \left| {\sum\limits_{j = 1}^n {{x_j}{S_j}} } \right|$$ , answering a question of A. Baernstein and R. Culverhouse.  相似文献   

5.
Let {X n : n ?? 1} be a strictly stationary sequence of positively associated random variables with mean zero and finite variance. Set $S_n = \sum\limits_{k = 1}^n {X_k }$ , $Mn = \mathop {\max }\limits_{k \leqslant n} \left| {S_k } \right|$ , n ?? 1. Suppose that $0 < \sigma ^2 = EX_1^2 + 2\sum\limits_{k = 2}^\infty {EX_1 X_k < \infty }$ . In this paper, we prove that if E|X 1|2+?? < for some ?? ?? (0, 1], and $\sum\limits_{j = n + 1}^\infty {Cov\left( {X_1 ,X_j } \right) = O\left( {n^{ - \alpha } } \right)}$ for some ?? > 1, then for any b > ?1/2 $$\mathop {\lim }\limits_{\varepsilon \searrow 0} \varepsilon ^{2b + 1} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^{b - 1/2} }} {{n^{3/2} \log n}}} E\left\{ {M_n - \sigma \varepsilon \sqrt {2n\log \log n} } \right\}_ + = \frac{{2^{ - 1/2 - b} E\left| N \right|^{2(b + 1)} }} {{(b + 1)(2b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2(b + 1)} }}}$$ and $$\mathop {\lim }\limits_{\varepsilon \nearrow \infty } \varepsilon ^{ - 2(b + 1)} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^b }} {{n^{3/2} \log n}}E\left\{ {\sigma \varepsilon \sqrt {\frac{{\pi ^2 n}} {{8\log \log n}}} - M_n } \right\}} _ + = \frac{{\Gamma (b + 1/2)}} {{\sqrt 2 (b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2b + 2} }}} ,$$ where x + = max{x, 0}, N is a standard normal random variable, and ??(·) is a Gamma function.  相似文献   

6.
стАтьь ьВльЕтсь пРОД ОлжЕНИЕМ пРЕДыДУЩЕИ ОДНОИМЕННОИ РАБОты АВтОРА, гДЕ ИжУ ЧАлсь пОРьДОк ВЕлИЧИН пРИ УслОВИьх, ЧтО α>-1/2, Рα >- 1 И ЧтО МАтРИцАt nk УДОВлЕтВОРьЕт НЕкОт ОРОМУ УслОВИУ РЕгУльРНОстИ. жДЕсь ДОкАжыВАЕтсь, Ч тО ЕслИfH Ω, тО ВыпОлНь Етсь ОцЕНкА $$\left\{ {\frac{1}{{\lambda _n }}\mathop \Sigma \limits_{k = n - \lambda _n + 1}^n \left| {\sigma _k^\alpha \left( x \right) - f\left( x \right)} \right|^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} = O\left( {\left\{ {\frac{1}{{\lambda _n }}\mathop \Sigma \limits_{k = n - \lambda _n + 1}^n \left( {\frac{1}{k}\mathop \smallint \limits_{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-\nulldelimiterspace} k}}^{2\pi } \frac{{\omega \left( t \right)}}{{t^2 }}dt} \right)^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} + \left( {\frac{{\lambda _n }}{n}} \right)^\alpha \omega \left( {\frac{1}{n}} \right)} \right)$$ 1=1, λn+1n≦1), А тАкжЕ ЧтО Ёт А ОцЕНкА ОкОНЧАтЕльН А В сВОИх тЕРМИНАх; пОДОБ НыИ РЕжУль-тАт спРАВЕДлИВ тАкжЕ И Дль сОпРьжЕННОИ ФУНкцИИ . ДОкАжыВАЕтсь, ЧтО Усл ОВИьα>?1/2 И>?1, кОтОРыЕ Б ылИ НАлОжЕНы В УпОМьНУтО И ВышЕ ЧАстИ I, сУЩЕстВЕН Ны.  相似文献   

7.
We show that the number of elements in FM(1+1+n), the modular lattice freely generated by two single elements and an n-element chain, is 1 $$\frac{1}{{6\sqrt 2 }}\sum\limits_{k = 0}^{n + 1} {\left[ {2\left( {\begin{array}{*{20}c} {2k} \\ k \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} {2k} \\ {k - 2} \\ \end{array} } \right)} \right]} \left( {\lambda _1^{n - k + 2} - \lambda _2^{n - k + 2} } \right) - 2$$ , where \(\lambda _{1,2} = {{\left( {4 \pm 3\sqrt 2 } \right)} \mathord{\left/ {\vphantom {{\left( {4 \pm 3\sqrt 2 } \right)} 2}} \right. \kern-0em} 2}\) .  相似文献   

8.
For the solutions of boundary-value problems for the equation Δu???ku?=?f in the layer $$ \varPi =\left\{ {\left( {x^{\prime},{x_n}} \right)\in {{\mathbb{R}}^n}|{x}^{\prime}\in {{\mathbb{R}}^{n-1 }},{x_n}\in \left( {a,b} \right)} \right\},\quad -\infty <a<b<+\infty, \quad n\geq 3, $$ one obtains the first term of their asymptotics at infinity.  相似文献   

9.
LetL(x) denote the number of square-full integers not exceedingx. It is well-known that $$L\left( x \right) \sim \frac{{\zeta \left( {{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}{{\zeta \left( 3 \right)}}x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \frac{{\zeta \left( {{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3}} \right)}}{{\zeta \left( 2 \right)}}x^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} ,$$ whereζ(s) denotes the Riemann Zeta function, LetΔ(x) denote the error function in the asymptotic formula forL(x). On the assumption of the Riemann hypothesis (R.H.), it is known that $$\Delta x = O\left( {x^{13/81 + 8} } \right)$$ for everyε > 0. In this paper, we prove on the assumption of R.H. that $$\frac{1}{x}\int\limits_x^1 {\left| {\Delta \left( t \right)} \right|dt = O\left( {x^{1/10 + ^8 } } \right)} .$$ In fact, we prove a more general result. We conjecture that $$\Delta x = O\left( {x^{1/10 + ^8 } } \right)$$ under the assumption of the R.H.  相似文献   

10.
11.
LetL(x) denote the number of square full integers ≤x. By a square-full integer, we mean a positive integer all of whose prime factors have multiplicity at least two. It is well known that $$\left. {L(x)} \right| \sim \frac{{\zeta ({3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2})}}{{\zeta (3)}}x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \frac{{\zeta ({2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3})}}{{\zeta (2)}}x^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} ,$$ where ζ(s) denotes the Riemann Zeta function. Let Δ(x) denote the error function in the asymptotic formula forL(x). On the basis of the Riemann hypothesis (R.H.), it is known that \(\Delta (x) = O(x^{\tfrac{{13}}{{81}} + \varepsilon } )\) for every ε>0. In this paper, we prove the following results on the assumption of R.H.: (1) $$\frac{1}{x}\int\limits_1^x {\Delta (t)dt} = O(x^{\tfrac{1}{{12}} + \varepsilon } ),$$ (2) $$\int\limits_1^x {\frac{{\Delta (t)}}{t}\log } ^{v - 1} \left( {\frac{x}{t}} \right) = O(x^{\tfrac{1}{{12}} + \varepsilon } )$$ for any integer ν≥1. In fact, we prove some general results and deduce the above from them. On the basis of (1) and (2) above, we conjecture that \(\Delta (x) = O(x^{{1 \mathord{\left/ {\vphantom {1 {12}}} \right. \kern-0em} {12}} + \varepsilon } )\) under the assumption of R.H.  相似文献   

12.
Timofeev  N. M.  Khripunova  M. B. 《Mathematical Notes》2004,76(1-2):244-263
Suppose that $${g\left( n \right)}$$ is an additive real-valued function, W(N) = 4+ $$\mathop {\min }\limits_\lambda $$ ( λ2 + $$\sum\limits_{p < N} {\frac{1}{2}} $$ min (1, ( g(p) - λlog p)2), E(N) = 4+1 $$\sum\limits_{\mathop {p < N,}\limits_{g(p) \ne 0} } {\frac{1}{p}.} $$ In this paper, we prove the existence of constants C1, C2 such that the following inequalities hold: $\mathop {\sup }\limits_a \geqslant \left| {\left\{ {n, m, k: m, k \in \mathbb{Z},n \in \mathbb{N},n + m^2 + k^2 } \right.} \right. = \left. {\left. {N,{\text{ }}g(n) \in [a,a + 1)} \right\}} \right| \leqslant \frac{{C_1 N}}{{\sqrt {W\left( N \right)} }},$ $\mathop {\sup }\limits_a \geqslant \left| {\left\{ {n, m, k: m, k \in \mathbb{Z},n \in \mathbb{N},n + m^2 + k^2 } \right.} \right. = \left. {\left. {N,{\text{ }}g(n) = a} \right\}} \right| \leqslant \frac{{C_2 N}}{{\sqrt {E\left( N \right)} }},$ . The obtained estimates are order-sharp.  相似文献   

13.
The asymptotic behavior asn, m → ∞ of the sum $$\sum\limits_{\kappa ,\ell = m}^{n - 1} {\exp \left[ {i\omega \sqrt n \left( {\sqrt \kappa + \sqrt \ell } \right)} \right]} \Phi \left( {1 - \frac{{\left| {\sqrt \kappa - \sqrt \ell } \right|}}{\Delta }} \right)$$ is studied where π(t)=0 for t?0 and φ(t)=t for t > 0.  相似文献   

14.
Kayumov  I. R. 《Mathematical Notes》2004,76(3-4):472-477
In this paper, the following sharp estimate is proved: $$\int_{0}^{2{\pi }} {\left| {F\prime \left( {e^{i\theta } } \right)} \right|^p d\theta \leqslant \sqrt {\pi } 2^{1 + p} \frac{{\gamma \left( {{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} + {p \mathord{\left/ {\vphantom {p 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}} {{\gamma \left( {1 + {p \mathord{\left/ {\vphantom {p 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}} ,\quad p > - 1,$$ where F is the conformal mapping of the domain $D^ - = \left\{ {\zeta :\left| \zeta \right| > 1} \right\}$ onto the exterior of a convex curve, with $F\prime \left( \infty \right) = 1$ . For p=1, this result is due to Pólya and Shiffer. We also obtain several generalizations of this estimate under other geometric assumptions about the structure of the domain F(D -).  相似文献   

15.
The following nontrivial estimate is obtained for short exponential sums: $$Sc\left( {\alpha ,x,y} \right) = \sum\limits_{x - y < n \leqslant x} {e\left( {\alpha \left[ {n^c } \right]} \right) < < y\ln ^A x,}$$ where $y \geqslant x^{\tfrac{1} {2}} \ln ^A x,x^{1 - c} y^{ - 1} \ln ^A x \leqslant \left| \alpha \right| \leqslant 0.5$ , c > 2 and ∥c∥ ≥ δ, A is a fixed positive number, and $\delta = \delta \left( {x,c,A} \right) = \left( {2^{\left[ c \right] + 1} - 1} \right)\left( {A + 2.5} \right) \cdot \frac{{\ln \ln x}} {{\ln x}}$ .  相似文献   

16.
Let $f(x,y,x,w) = x^2 + y^2 + z^2 + Dw^2$ , where $D >1$ is an integer such that $D \ne d^2$ and ${{\sqrt n } \mathord{\left/ {\vphantom {{\sqrt n } {\sqrt D = n^\theta , 0 < \theta < {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}} \right. \kern-0em} {\sqrt D = n^\theta , 0 < \theta < {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}$ . Let $rf(n)$ be the number of representations of n by f. It is proved that $r_f (n) = \pi ^2 \frac{n}{{\sqrt D }}\sigma _f (n) + O\left( {\frac{{n^{1 + \varepsilon - c(\theta )} }}{{\sqrt D }}} \right),$ where $\sigma _f (n)$ is the singular series, $c(\theta ) >0$ , and ε is an arbitrarily small positive constant. Bibliography: 14 titles.  相似文献   

17.
The paper describes a systematic computational study of the prime counting function π(x) and three of its analytic approximations: the logarithmic integral \({\text{li}}{\left( x \right)}: = {\int_0^x {\frac{{dt}}{{\log \,t}}} }\), \({\text{li}}{\left( x \right)} - \frac{1}{2}{\text{li}}{\left( {{\sqrt x }} \right)}\), and \(R{\left( x \right)}: = {\sum\nolimits_{k = 1}^\infty {{\mu {\left( k \right)}{\text{li}}{\left( {x^{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-\nulldelimiterspace} k}} } \right)}} \mathord{\left/ {\vphantom {{\mu {\left( k \right)}{\text{li}}{\left( {x^{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-\nulldelimiterspace} k}} } \right)}} k}} \right. \kern-\nulldelimiterspace} k} }\), where μ is the Möbius function. The results show that π(x)x) for 2≤x≤1014, and also seem to support several conjectures on the maximal and average errors of the three approximations, most importantly \({\left| {\pi {\left( x \right)} - {\text{li}}{\left( x \right)}} \right|} < x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}\) and \( - \frac{2}{5}x^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} < {\int_2^x {{\left( {\pi {\left( u \right)} - {\text{li}}{\left( u \right)}} \right)}du < 0} }\) for all x>2. The paper concludes with a short discussion of prospects for further computational progress.  相似文献   

18.
Let f and g be distributions and let gn = (g * δn)(x), where δn (x) is a certain converging to the Dirac delta function. The non-commutative neutrix product fog of f and g to be the limit of the sequence {fgn }, provided its limit h exists in the sense that sequence is defined N-lim n-∞(f(x)g,, (x), φ(x)〉 = (h(x), φ(x)},for all functions p in 2. It is proved that (x^λ+1n^px+)0(x^μ+1n^qx+)=x+^λμ1n^p+qx+,(x^λ-1n^qx-)=x-^λ+μ1n^p+qx-,for λ+μ〈-1; λ,μ, λ+μ≠-1,-2…and p,q=0,1,2……  相似文献   

19.
Let C(Q) denote the space of continuous functions f(x, y) in the square Q = [?1, 1] × [?1, 1] with the norm $\begin{gathered} \left\| f \right\| = \max \left| {f(x,y)} \right|, \hfill \\ (x,y) \in Q. \hfill \\ \end{gathered} $ On a Chebyshev grid, a cubature formula of the form $\int\limits_{ - 1}^1 {\int\limits_{ - 1}^1 {\frac{1} {{\sqrt {(1 - x^2 )(1 - y^2 )} }}f(x,y)dxdy = \frac{{\pi ^2 }} {{mn}}\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {f\left( {\cos \frac{{2i - 1}} {{2n}}\pi ,\cos \frac{{2j - 1}} {{2m}}\pi } \right)} + R_{m,n} (f)} } } $ is considered in some class H(r 1, r 2) of functions f ?? C(Q) defined by a generalized shift operator. The remainder R m, n (f) is proved to satisfy the estimate $\mathop {\sup }\limits_{f \in H(r_1 ,r_2 )} \left| {R_{m,n} (f)} \right| = O(n^{ - r_1 + 1} + m^{ - r_2 + 1} ), $ where r 1, r 2 > 1; ???1 ?? n/m ?? ?? with ?? > 0; and the constant in O(1) depends on ??.  相似文献   

20.
In the “lost notebook”, Ramanujan recorded infinite product expansions for
$\frac{1} {{\sqrt r }} - \left( {\frac{{1 - \sqrt 5 }} {2}} \right)\sqrt r and \frac{1} {{\sqrt r }} - \left( {\frac{{1 + \sqrt 5 }} {2}} \right)\sqrt r ,$\frac{1} {{\sqrt r }} - \left( {\frac{{1 - \sqrt 5 }} {2}} \right)\sqrt r and \frac{1} {{\sqrt r }} - \left( {\frac{{1 + \sqrt 5 }} {2}} \right)\sqrt r ,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号