首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gaur R  Mishra L 《Inorganic chemistry》2012,51(5):3059-3070
The complexes of type cis-[Ru(S-DMSO)(3)(R-CO-CH═CH-R')Cl] (R = 2-hydroxyphenyl for all, R' = phenyl 1, naphthyl 2, anthracenyl 3, thiophene 4, 3-methyl thiophene 5) are synthesized and characterized using spectroscopic (IR, (1)H and (13)C NMR, and UV-vis) and single crystal X-ray diffraction techniques. Their crystal structures show the formation of both intermolecular and intramolecular H-bonding. The molecular assembly of complex 5 using secondary interactions provides a butterfly structure. The binding of complexes with calf thymus DNA is monitored using UV-vis spectral titrations. The binding interaction of complexes 1, 2, and 3 with DNA increases with increasing conjugation of aromatic rings. However, complexes 4 and 5 interact with DNA strongly. The emission from ethidium bromide (EB) bound DNA recorded in phosphate buffer solution (pH = 7.2) decreases by incremental addition of solution of the complexes. The complexes 4 and 5 (100 μM) bind with the minor groove of DNA and cleave double-stranded pBR322 DNA significantly even in the absence of an activator. In the presence of H(2)O(2), they cleave supercoiled DNA via oxidative pathway even at lower concentration (20 μM). Both complexes 4 and 5 inhibit topoisomerase II activity with IC(50) values of 18 and 13. These values suggest that 4 and 5 are potential topoisomerase II inhibitors as compared to some of known inhibitors like novobiocin and etoposide.  相似文献   

2.
Chen ZF  Shi YF  Liu YC  Hong X  Geng B  Peng Y  Liang H 《Inorganic chemistry》2012,51(4):1998-2009
The alkaloid oxoglaucine (OG), which is a bioactive component from traditional Chinese medicine (TCM), was synthesized by a two-step reaction and used as the ligand to react with transition metal salts to give four complexes: [OGH][AuCl(4)]·DMSO (1), [Zn(OG)(2)(H(2)O)(2)](NO(3))(2) (2), [Co(OG)(2)(H(2)O)(2)](ClO(4))(2) (3), and [Mn(OG)(2)(H(2)O)(2)](ClO(4))(2) (4). The crystal structures of the metal complexes were confirmed by single crystal X-ray diffraction. Complex 1 is an ionic compound consisting of a charged ligand [OGH](+) and a gold complex [AuCl(4)](-). Complexes 2-4 all have similar structures (inner-spheres), that is, octahedral geometry with two OG coordinating to one metal center and two aqua ligands occupying the two apical positions of the octahedron, and two NO(3)(-) or ClO(4)(-) as counteranions in the outer-sphere. The complexation of OG to metal ion was confirmed by ESI-MS, capillary electrophoresis and fluorescence polarization. The in vitro cytotoxicity of these complexes toward a various tumor cell lines was assayed by the MTT method. The results showed that most of these metal-oxoglaucine complexes exhibited enhanced cytotoxicity compared with oxoglaucine and the corresponding metal salts, with IC(50) values ranging from 1.4 to 32.7 μM for sensitive cancer cells, which clearly implied a positive synergistic effect. Moreover, these complexes appeared to be selectively active against certain cell lines. The interactions of oxoglaucine and its metal complexes with DNA and topoisomerase I were investigated by UV-vis, fluorescence, CD spectroscopy, viscosity, and agarose gel electrophoresis, and the results indicated that these OG-metal complexes interact with DNA mainly via intercalation. Complexes 2-4 are metallointercalators, but complex 1 is not. These metal complexes could effectively inhibit topoisomerase I even at low concentration. Cell cycle analysis revealed that 1-3 caused S-phase cell arrest.  相似文献   

3.
Lam WW  Man WL  Wang YN  Lau TC 《Inorganic chemistry》2008,47(15):6771-6778
The kinetics and mechanisms of the oxidation of I (-) and Br (-) by trans-[Ru (VI)(N 2O 2)(O) 2] (2+) have been investigated in aqueous solutions. The reactions have the following stoichiometry: trans-[Ru (VI)(N 2O 2)(O) 2] (2+) + 3X (-) + 2H (+) --> trans-[Ru (IV)(N 2O 2)(O)(OH 2)] (2+) + X 3 (-) (X = Br, I). In the oxidation of I (-) the I 3 (-)is produced in two distinct phases. The first phase produces 45% of I 3 (-) with the rate law d[I 3 (-)]/dt = ( k a + k b[H (+)])[Ru (VI)][I (-)]. The remaining I 3 (-) is produced in the second phase which is much slower, and it follows first-order kinetics but the rate constant is independent of [I (-)], [H (+)], and ionic strength. In the proposed mechanism the first phase involves formation of a charge-transfer complex between Ru (VI) and I (-), which then undergoes a parallel acid-catalyzed oxygen atom transfer to produce [Ru (IV)(N 2O 2)(O)(OHI)] (2+), and a one electron transfer to give [Ru (V)(N 2O 2)(O)(OH)] (2+) and I (*). [Ru (V)(N 2O 2)(O)(OH)] (2+) is a stronger oxidant than [Ru (VI)(N 2O 2)(O) 2] (2+) and will rapidly oxidize another I (-) to I (*). In the second phase the [Ru (IV)(N 2O 2)(O)(OHI)] (2+) undergoes rate-limiting aquation to produce HOI which reacts rapidly with I (-) to produce I 2. In the oxidation of Br (-) the rate law is -d[Ru (VI)]/d t = {( k a2 + k b2[H (+)]) + ( k a3 + k b3[H (+)]) [Br (-)]}[Ru (VI)][Br (-)]. At 298.0 K and I = 0.1 M, k a2 = (2.03 +/- 0.03) x 10 (-2) M (-1) s (-1), k b2 = (1.50 +/- 0.07) x 10 (-1) M (-2) s (-1), k a3 = (7.22 +/- 2.19) x 10 (-1) M (-2) s (-1) and k b3 = (4.85 +/- 0.04) x 10 (2) M (-3) s (-1). The proposed mechanism involves initial oxygen atom transfer from trans-[Ru (VI)(N 2O 2)(O) 2] (2+) to Br (-) to give trans-[Ru (IV)(N 2O 2)(O)(OBr)] (+), which then undergoes parallel aquation and oxidation of Br (-), and both reactions are acid-catalyzed.  相似文献   

4.
A new dinuclear copper salicylaldehyde-glycine Schiff-base complex [Cu(2)(Sal-Gly)(2)(H(2)O)(2)] was synthesized and structurally characterized. [Cu(2)(Sal-Gly)(2)(H(2)O)(2)] crystallized in the monoclinic system in the P2(1)/c space group. The molecule is a dinuclear complex, formed by two [Cu(Sal-Gly)(H(2)O)] units. The electropolymerization properties of the copper complex on a glass carbon electrode were studied at different potential ranges. The electropolymerization occurred when the high scan potential reached 1.4 V. The modified electrode exhibited good electrocatalytic oxidation properties to ascorbic acid and showed a sensitivity of 22.9 nA μM(-1) (r(2) = 0.9998) and detection limit of 0.39 μM (S/N = 3) in the amperometric determination of ascorbic acid. The designed determination method can be used to analyze vitamin C tablets.  相似文献   

5.
Two ruthenium complexes containing a new phenanthroline-based ligand pai (pai = 2-(5-(1, 10- phenanthroline))-1H-acenaphtho[1′,2′:4,5]imidazole) were synthesized and characterized. Two ruthenium complexes were found to cleave DNA under irradiation, interact with CT-DNA by intercalation. Furthermore, DNA topoisomerase inhibition experiments indicated that complex 2 exhibited higher topoisomerase I inhibition activity (IC50 = 10 μM) than complex 1 (IC50 = 40 μM). Molecular modeling studies revealed that complex 2 stabilized Top1cc complex via π-π interaction and the formation of hydrogen bond. The cytotoxicity of complexes 1 and 2 against Eca-109 and A549 cells was also evaluate by MTT method, indicating that complex 2 exhibited good anticancer activity against Eca-109 cells (IC50 = 17.23 ± 0.22 μM), but two ruthenium complexes displayed weak anticancer activity against A549 cells.  相似文献   

6.
C Xiong  Z Xiao  M Zhang  L Ling 《The Analyst》2012,137(19):4428-4434
A sensor for H(2)O(2) and H(2)O(2)-related reactant was constructed with oligonucleotides and Ru(bipy)(2)dppx(2+) (bipy = 2,2'-bipyridine, dppx = 7,8-dimethyl-dipyridophenazine), which was performed by converting the H(2)O(2)-induced DNA cleavage into the change of luminescence. The 'DNA light switch' Ru(bipy)(2)dppx(2+) could emit strong luminescence in the presence of dsDNA. DNA cleavage occurred upon addition of H(2)O(2) due to the Fenton reaction, which resulted in the decrease of the luminescence of Ru(bipy)(2)dppx(2+). Therefore, the luminescence intensity depended on the concentration of H(2)O(2) and H(2)O(2)-related reactants, and the detection limits for H(2)O(2), uric acid and cholesterol were 0.20 μM, 0.46 μM and 1.25 μM, respectively. The recovery varied between 94.0% and 105.0% when the assay was applied to the determination of uric acid and cholesterol in biological samples, which demonstrated the good practicability of the assay.  相似文献   

7.
Three isostructural anionic frameworks {[(Hdma)(H(3)O)][In(2)(L(1))(2)]·4DMF·5H(2)O}(∞) (NOTT-206-solv), {[H(2)ppz][In(2)(L(2))(2)]·3.5DMF·5H(2)O}(∞) (NOTT-200-solv), and {[H(2)ppz][In(2)(L(3))(2)]·4DMF·5.5H(2)O}(∞) (NOTT-208-solv) (dma = dimethylamine; ppz = piperazine) each featuring organic countercations that selectively block the channels and act as pore gates have been prepared. The organic cations within the as-synthesized frameworks can be replaced by Li(+) ions to yield the corresponding Li(+)-containing frameworks {Li(1.2)(H(3)O)(0.8)[In(2)(L(1))(2)]·14H(2)O}(∞) (NOTT-207-solv), {Li(1.5)(H(3)O)(0.5)[In(2)(L(2))(2)]·11H(2)O}(∞) (NOTT-201-solv), and {Li(1.4)(H(3)O)(0.6)[In(2)(L(3))(2)]·4acetone·11H(2)O}(∞) (NOTT-209-solv) in which the pores are now unblocked. The desolvated framework materials NOTT-200a, NOTT-206a, and NOTT-208a display nonporous, hysteretic and reversible N(2) uptakes, respectively, while NOTT-206a and NOTT-200a provide a strong kinetic trap showing adsorption/desorption hysteresis with H(2). Single crystal X-ray analysis confirms that the Li(+) ions are either tetrahedrally (in NOTT-201-solv and NOTT-209-solv) or octahedrally (in NOTT-207-solv) coordinated by carboxylate oxygen atoms and/or water molecules. This is supported by (7)Li solid-state NMR spectroscopy. NOTT-209a, compared with NOTT-208a, shows a 31% enhancement in H(2) storage capacity coupled to a 38% increase in the isosteric heat of adsorption to 12 kJ/mol at zero coverage. Thus, by modulating the pore environment via postsynthetic cation exchange, the gas adsorption properties of the resultant MOF can be fine-tuned. This affords a methodology for the development of high capacity storage materials that may operate at more ambient temperatures.  相似文献   

8.
Ferrocene-conjugated L-tryptophan (L-Trp) reduced Schiff base (Fc-TrpH) copper(II) complexes [Cu(Fc-Trp)(L)](ClO(4)) of phenanthroline bases (L), viz. 2,2'-bipyridine (bpy in 1), 1,10-phenanthroline (phen in 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 4), were prepared and characterized and their photocytotoxicity studied. Cationic reduced Schiff base (Ph-TrpH) complexes [Cu(Ph-Trp)(L)(H(2)O)](ClO(4)) (L = phen in 5; dppz in 6) having the ferrocenyl moiety replaced by a phenyl group and the Zn(II) analogue (7) of complex 4 were prepared and used as control species. The crystal structures of 1 and 5 with respective square-planar CuN(3)O and square-pyramidal CuN(3)O(2) coordination geometry show significantly different core structures. Complexes 1-4 exhibit a Cu(II)-Cu(I) redox couple near -0.1 V and the Fc(+)-Fc couple at ~0.5 V vs SCE in DMF-0.1 M [Bu(n)(4)N](ClO(4)) (Fc = ferrocenyl moiety). The complexes display a copper(II)-based d-d band near 600 nm and a Fc-centered band at ~450 nm in DMF-Tris-HCl buffer. The complexes are efficient binders to calf thymus DNA. They are synthetic chemical nucleases in the presence of thiol or H(2)O(2), forming hydroxyl radicals. The photoactive complexes are cleavers of pUC19 DNA in visible light, forming hydroxyl radicals. Complexes 2-6 show photocytotoxicity in HeLa cancer cells, giving IC(50) values of 4.7, 10.2, 1.3, 4.8, and 4.3 μM, respectively, in visible light with the appearance of apoptotic bodies. The complexes also show photocytotoxicity in MCF-7 cancer cells. Nuclear chromatin cleavage has been observed with acridine orange/ethidium bromide (AO/EB) dual staining with complex 4 in visible light. The complexes induce caspase-independent apoptosis in the HeLa cells.  相似文献   

9.
Synthetic and kinetic experiments designed to probe the mechanism of O(2) activation by the trianionic pincer chromium(III) complex [(t)BuOCO]Cr(III)(THF)(3) (1) (where (t)BuOCO = [2,6-((t)BuC(6)H(3)O)(2)C(6)H(3)](3-), THF = tetrahydrofuran) are described. Whereas analogous porphyrin and corrole oxidation catalysts can become inactive toward O(2) activation upon dimerization (forming a μ-oxo species) or product inhibition, complex 1 becomes more active toward O(2) activation when dimerized. The product from O(2) activation, [(t)BuOCO]Cr(V)(O)(THF) (2), catalyzes the oxidation of 1 via formation of the μ-O dimer {[(t)BuOCO]Cr(IV)(THF)}(2)(μ-O) (3). Complex 3 exists in equilibrium with 1 and 2 and thus could not be isolated in pure form. However, single crystals of 3 and 1 co-deposit, and the molecular stucture of 3 was determined using single-crystal X-ray crystallography methods. Variable (9.5, 35, and 240 GHz) frequency electron paramagnetic resonance spectroscopy supports the assignment of complex 3 as a Cr(IV)-O-Cr(IV) dimer, with a high (S = 2) spin ground state, based on detailed computer simulations. Complex 3 is the first conclusively assigned example of a complex containing a Cr(IV) dimer; its spin Hamiltonian parameters are g(iso) = 1.976, D = 2400 G, and E = 750 G. The reaction of 1 with O(2) was monitored by UV-visible spectrophotometry, and the kinetic orders of the reagents were determined. The reaction does not exhibit first-order behavior with respect to the concentrations of complex 1 and O(2). Altering the THF concentration reveals an inverse order behavior in THF. A proposed autocatalytic mechanism, with 3 as the key intermediate, was employed in numerical simulations of concentration versus time decay plots, and the individual rate constants were calculated. The simulations agree well with the experimental observations. The acceleration is not unique to 2; for example, the presence of OPPh(3) accelerates O(2) activation by forming the five-coordinate complex trans-[(t)BuOCO]Cr(III)(OPPh(3))(2) (4).  相似文献   

10.
The kinetics of oxidation of bis(maltolato)oxovanadium(IV), BMOV or VO(ma)(2), by dioxygen have been studied by UV-vis spectroscopy in both MeOH and H(2)O media. The VO(ma)(2):O(2) stoichiometry was 4:1. In aqueous solution, the pH-dependent rate of the VO(ma)(2)/O(2) reaction to generate cis-[VO(2)(ma)(2)](-) is attributed to the deprotonation of coordinated H(2)O, the deprotonated species [VO(ma)(2)(OH)](-) being more easily oxidized (k(OH) = 0.39 M(-)(1) s(-)(1), 25 degrees C) than the neutral form VO(ma)(2)(H(2)O) (k(H)()2(O) = 0.08 M(-)(1) s(-)(1), 25 degrees C). The activation parameters for the two second-order reactions in aqueous solution were deduced from variable temperature kinetic measurements. In MeOH, VO(ma)(2) was oxidized by dioxygen to cis-VO(OMe)(ma)(2), whose structure was characterized by single-crystal X-ray diffraction; the crystals were monoclinic, C2/c, with a = 28.103(1) ?, b = 7.721(2) ?, c = 13.443(2) ?, beta = 94.290(7) degrees, and Z = 8. The structure was solved by Patterson methods and was refined by full-matrix least-squares procedures to R = 0.043 for 1855 reflections with I >/= 3sigma(I). The kinetic results are consistent with a mechanism involving an attack of O(2) at the V(IV) center, followed by the formation of radicals and H(2)O(2) as transient intermediates.  相似文献   

11.
Lemma K  Bakac A 《Inorganic chemistry》2004,43(14):4505-4510
Oxygen atom transfer from trans-L(H(2)O)RhOOH(2+) [L = [14]aneN(4) (L(1)), meso-Me(6)[14]aneN(4) (L(2)), and (NH(3))(4)] to iodide takes place according to the rate law -d[L(H(2)O)RhOOH(2+)]/dt = k(I)[L(H(2)O)RhOOH(2+)][I(-)][H(+)]. At 0.10 M ionic strength and 25 degrees C, the rate constant k(I)/M(-)(2) s(-)(1) has values of 8.8 x 10(3) [L = (NH(3))(4)], 536 (L(1)), and 530 (L(2)). The final products are LRh(H(2)O)(2)(3+) and I(2)/I(3)(-). The (NH(3))(4)(H(2)O)RhOOH(2+)/Br(-) reaction also exhibits mixed third-order kinetics with k(Br) approximately 1.8 M(-)(2) s(-)(1) at high concentrations of acid (close to 1 M) and bromide (close to 0.1 M) and an ionic strength of 1.0 M. Under these conditions, Br(2)/Br(3)(-) is produced in stoichiometric amounts. As the concentrations of acid and bromide decrease, the reaction begins to generate O(2) at the expense of Br(2), until the limit at which [H(+)] 2(NH(3))(4)(H(2)O)RhOH(2+) + O(2); i.e., the reaction has turned into the bromide-catalyzed disproportionation of coordinated hydroperoxide. In the proposed mechanism, the hydrolysis of the initially formed Br(2) produces HOBr, the active oxidant for the second equivalent of (NH(3))(4)(H(2)O)RhOOH(2+). The rate constant k(HOBr) for the HOBr/(NH(3))(4)(H(2)O)RhOOH(2+) reaction is 2.9 x 10(8) M(-)(1) s(-)(1).  相似文献   

12.
The reactivity of the hydroperoxo complex [Co(CN)(5)OOH](3)(-) has been studied in aqueous solution. The complex undergoes acid-catalyzed aquation (k = 1.89(5) x 10(-)(2) s(-)(1), pK(a) = 5.21(4), T = 20 degrees C, I = 0.1 M). Assuming an I(d) mechanism, this allows the relative affinity for Co(III) to be deduced as H(2)O(2) < H(2)O < HO(2)(-) and implies H(2)O(2) to be a very weak ligand. At neutral pH the hydroperoxo complex effects efficient oxygen atom transfer to L-methionine to give an intermediate identified as [Co(CN)(5)(L-methionine S-oxide)](2)(-), which then dissociates to [Co(CN)(5)OH(2)](2)(-) and L-methionine S-oxide. The reaction is acid catalyzed and is proposed to take place via nucleophilic attack of sulfur on the proximal oxygen of the hydroperoxo ligand with concerted loss of water. The significance of these results for the interaction of hydrogen peroxide with labile metal ions is discussed.  相似文献   

13.
Two one-dimensional cobalt(Ⅱ) compounds {[Co(Hbpma)(H2O)4 ] 2 ·3SO 4 ·4.5H2O} n1 and {[Co(Hbpma)(NCS) 3 (H2O)]·2.85H2O}n2 (bpma = N,N -bis(3-pyridylmethyl)amine) have been synthesized and structurally characterized by single-crystal X-ray diffraction. Complex 1 crystallizes in triclinic, space group P1 with a = 15.8780(5), b = 16.2187(5), c = 16.4858(5) , α = 91.0420(10), β = 94.5190(10), γ = 101.4360(10)°, V = 4145.7(2) 3 , C 24 H 53 Co 2 N 6 O 24.50 S 3 , M r = 1031.76, Z = 4, D c = 1.653 g/cm 3 , μ(MoKα) = 1.046 mm -1 , F(000) = 2148, S = 1.017, the final R = 0.0269 and wR = 0.0644 for 13032 observed reflections (I > 2σ(I)). For complex 2, it belongs to triclinic, space group P1 with a = 9.3761(11), b = 10.5814(13), c = 11.2972(14) , α = 85.472(2), β = 88.058(2), γ = 76.203(2)°, V = 1085.0(2) 3 , C 15 H 21.70 CoN 6 O 3.85 S 3 , M r = 502.79, Z = 2, D c = 1.539 g/cm 3 , μ(MoKα) = 1.112 mm -1 , F(000) = 519, S = 1.070, the final R = 0.0358 and wR = 0.0899 for 3466 observed reflections (I > 2σ(I)). Two complexes 1 and 2 are both found to be one-dimensional coordination polymers bridged by the protonated bpma ligands, which are assembled into three-dimensional supramolecular structures through the hydrogen bonding interactions and π-π packing interactions.  相似文献   

14.
设计合成了新的(2-(2’-吡啶)苯并咪唑)(L-丙氨酸根)铜(II)配合物:[Cu(HPB)(L-Ala)(ClO4)(H2O)]2 H2O[HPB=2-(2’-吡啶)苯并咪唑,L-Ala=L-丙氨酸根].应用元素分析、红外光谱、紫外可见光谱、摩尔电导率、电喷雾质谱及X射线单晶衍射等方法对配合物的组成及结构进行了表征.该配合物晶体属单斜晶系,P21空间群,晶胞参数:a=1.1900(2)nm,b=0.80500(16)nm,c=1.9700(4)nm,β=94.78(3)°,Z=2,Dc=1.672 g cm-3,F(000)=968,残差因子R1=0.0427,wR2=0.1106[I>2σ(I)],S=0.999.在配合物分子中,2-(2’-吡啶)苯并咪唑和L-丙氨酸根以双齿配位方式在分子平面上与中心铜(II)离子配位,而水分子及高氯酸根单齿弱配位于分子轴向上,构成了一拉长的八面体结构.利用二倍试管稀释法测定了配合物的抗菌活性,并且研究了配合物对pBR 322 DNA的断裂作用.结果表明,该配合物对枯草杆菌(B.subtilis,G+),金黄色葡萄球菌(S.aureus,G+),大肠杆菌(E.coil,G-)和沙门氏杆菌(Salmonella,G-)具有良好的抑制活性,最小抑菌浓度为50~80μg mL-1,在维生素C存在下能够通过羟基自由基OH氧化断裂pBR 322 DNA双螺旋结构.  相似文献   

15.
Two mononuclear metal-organic complexes, [Co(Hmpdc)2(H2O)4]·4H2O 1 and [Ni(Hfmpdc)2(H2O)4]·6H2O 2, were prepared from 2,6-dimethylpyridine-3,5-dicarboxylic acid (H2mpdc) and 4-furyl-2,6-dimethylpyridine-3,5-dicarboxylic acid (H2fmpdc) with M(NO3)2 salts, respectively, and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectroscopy, and photoluminescent measurement. Complex 1 crystallizes in triclinic, space group P with a = 7.634(5), b = 8.695(5), c = 10.757(6)(A), α = 69.647(7), β = 69.957(8), γ = 83.733(7)°, V = 628.9(7)(A)3, Dc = 1. 561 g/cm3, μ(MoKα) = 0.763 mm-1, F(000) = 309, Z = 1, the final R = 0.0553 and wR = 0.1469 for 1909 observed reflections (I > 2σ(I)). Complex 2 crystallizes in monoclinic, space group P21/n with a = 9.5934(16), b = 12.422(2), c = 14.826(3)(A), β = 105.201(2)°, V = 1705.0(5)(A)3, Dc = 1. 479 g/cm3, μ(MoKα) = 0.655 mm-1, F(000) = 796, Z = 2, the final R = 0.0351 and wR = 0.0889 for 2387 observed reflections (I > 2σ(I)). In the crystal structures of 1 and 2, diverse supramolecular motifs from 1-D chains/ladders to 3-D networks are constructed from corresponding distinct [MⅡ(H2O)8] ion clusters as the second building units, respectively. The solid state compounds of 1 and 2 show similar photoluminescent spectra with emission maximum at ca. 466 nm at room temperature.  相似文献   

16.
A new bis-phenanthroline dicopper(II) complex has been synthesized and characterized by elemental analysis and spectroscopic methods. The molecular structure of the dinuclear Cu(II) complex [Cu(2)(μ-CH(3)COO)(μ-H(2)O)(μ-OH)(phen)(2)](2+) (phen = 1,10-phenanthroline) (1) was determined by single crystal X-ray diffraction technique. The coordination environment around each Cu(II) ion in complex 1 can be described as slightly distorted square pyramidal geometry. The distance between the CuCu centers in the complex is found to be 2.987 ?. The electronic, redox, phosphate hydrolysis, DNA binding and DNA cleavage have been studied. The antiproliferative effect of complex 1 was confirmed by the lactate dehydrogenase (LDH) enzyme level in MCF-7 cancer cell lysate and content media. The dicopper(II) complex inhibited the LDH enzyme as well as the growth of the human breast cancer MCF7 cell line at an IC(50) value of 0.011 μg ml(-1). The results strongly suggest that complex 1 is a good cancer therapeutic agent. Electrochemical studies of complex 1 showed an irreversible, followed by a quasi-reversible, one electron reduction processes between -0.20 to -0.8 V. Michaelis-Menten kinetic parameters for the hydrolysis of 4-nitrophenyl phosphate by complex 1 are k(cat) = 3.56 × 10(-2) s(-1) and K(M) = 4.3 × 10(-2) M. Complex 1 shows good binding propensity to calf thymus DNA, with a binding constant value of 1.3 (±0.13) × 10(5) M(-1) (s = 2.1). The size of the binding site and viscosity data suggest a DNA intercalative binding nature of the complex. Complex 1 shows efficient hydrolytic cleavage of supercoiled pBR322-DNA in the dark and in the absence of any external reagents, as demonstrated by the T4 ligase experiment. The pseudo-Michaelis-Menten kinetic parameters for DNA hydrolysis by complex 1 are k(cat) = 1.27 ± 0.4 h(-1) and K(M) = 7.7 × 10(-2) M.  相似文献   

17.
The synthesis and characterizations of a family of isomorphous [Mn(III)(2)M(III)(4)L(2)(μ(4)-O)(2)(N(3))(2)(CH(3)O)(2)(CH(3)OH)(4)(NO(3))(2)]·2H(2)O (M = Y(1), Gd(2), Tb(3), Dy(4)) are reported, where H(4)L = N,N'-dihydroxyethyl-N,N'-(2-hydroxy-4,5-dimethylbenzyl)ethylenediamine. They were obtained from the reactions of H(4)L with M(NO(3))(3)·6H(2)O, Mn(ClO(4))(2)·6H(2)O, NaN(3) and NEt(3) in a 1?:?1?:?1?:?2?:?2 molar ratio. The core structure consists of a Mn(2)M(4) unit. The four M(III) ions that are held together by two μ(4)-bridging oxygen atoms form a butterfly M(4) moiety. The M(4) core is further connected to the two five-coordinate trigonal-bipyramidal Mn(III) ions via one μ(4)-O(2-), two alkyloxo and one methoxo triple bridges. Magnetic susceptibility measurements indicate the presence of intramolecular antiferromagnetic interactions in complex 2, and overall intramolecular ferromagnetic interactions in complexes 3 and 4. The alternating current (AC) magnetic susceptibility studies revealed that complexes 3 and 4 showed frequency-dependent out-of-phase signals, which indicates that they exhibit slow relaxation of the magnetization.  相似文献   

18.
In the search for a pharmacological answer to treat Chagas disease, eight metal complexes with two bioactive bisphosphonates, alendronate (Ale) and pamidronate (Pam), were described. Complexes of the formula [M(2)(II)(Ale)(4)(H(2)O)(2)]·2H(2)O, with M = Cu, Co, Mn, Ni, and ([CuPam]·H(2)O)(n) as well as [M(II)(Pam)(2)(H(2)O)(2)]·3H(2)O, with M = Co, Mn and Ni, were synthesized and fully characterized. Crystal structure of [Cu(2)(II)(Ale)(4)(H(2)O)(2)]·2H(2)O, [Co(II)(Pam)(2)(H(2)O)(2)] and [Ni(II)(Pam)(2)(H(2)O)(2)] were solved by X-ray single crystal diffraction methods and the structures of [M(2)(II)(Ale)(4)(H(2)O)(2)]·2H(2)O complexes M = Co, Mn and Ni were studied by X-ray powder diffraction methods. All obtained complexes were active against the amastigote form of Trypanosoma cruzi (T. cruzi), etiological agent of Chagas disease. Most of them were more active than the corresponding free ligands showing no toxicity for mammalian cells. The main mechanism of the antiparasitic action of bisphosphonates, inhibition of parasitic farnesyl diphosphate synthase (TcFPPS), remains in the obtained metal complexes and an increase in the inhibiting enzyme levels was observed upon coordination. Observed enzymatic inhibition was selective for TcFPPS as the metal complexes showed no or little inhibition of human FPPS. Additionally, metal complexation might improve the bioavailability of the complexes through the hindrance of the phosphonate group's ionization at physiological pH and, eventually, through the ability of plasma proteins to work as complex transporters.  相似文献   

19.
Bakac A  Shi C  Pestovsky O 《Inorganic chemistry》2004,43(17):5416-5421
Superoxometal complexes L(H(2)O)MOO(2+) (L = (H(2)O)(4), (NH(3))(4), or N(4)-macrocycle; M = Cr(III), Rh(III)) react with iodide ions according to the stoichiometry L(H(2)O)MOO(2+) + 3I(-) + 3H(+) --> L(H(2)O)MOH(2+) + 1.5I(2) + H(2)O. The rate law is -d[L(H(2)O)MOO(2+)]/dt = k [L(H(2)O)MOO(2+)][I(-)][H(+)], where k = 93.7 M(-2) s(-1) for Cr(aq)OO(2+), 402 for ([14]aneN(4))(H(2)O)CrOO(2+), and 888 for (NH(3))(4)(H(2)O)RhOO(2+) in acidic aqueous solutions at 25 degrees C and 0.50 M ionic strength. The Cr(aq)OO(2+)/I(-) reaction exhibits an inverse solvent kinetic isotope effect, k(H)()2(O)/k(D)2(O) = 0.5. In the proposed mechanism, the protonation of the superoxo complex precedes the reaction with iodide. The related Cr(aq)OOH(2+)/I(-) reaction has k(H)2(O)/k(D)2(O) = 0.6. The oxidation of (NH(3))(5)Rupy(2+) by Cr(aq)OO(2+) exhibits an [H(+)]-dependent pathway, rate = (7.0 x 10(4) + 1.78 x 10(5)[H(+)])[Ru(NH(3))(5)py(2+)][Cr(aq)OO(2+)]. Diiodine radical anions, I(2)(*)(-), reduce Cr(aq)OO(2+) with a rate constant k = 1.7 x 10(9) M(-1) s(-1).  相似文献   

20.
The hydrothermal synthesis, X-ray crystal structures and thermal and magnetic properties of a layered coordination polymer, [Ni(3.9)Mn(1.1)(μ(3)-OH)(2)(L(I))(2)(H(2)O)(10)]·2H(2)O (1) (L(I) = 1e,2a,4a,5e-cyclohexanetetracarboxylate), and a porous 3D coordination polymer, [Ni(4)(μ(2)-OH)(2)(μ(6)-H(2)L(IV))(2)(pymc)(4,4'-bpy)(H(2)O)(2)](OH)·9H(2)O (2) (pymc = 2-pyrimidinecarboxylate, 4,4'-bpy = 4,4'-bipyridine, L(IV) = 1e,2e,4e,5e-cyclohexanetetracarboxylate), are reported in this paper. The structure of 1 has packed separated layers, each layer being formed of M(3)(μ(3)-OH)(2) chains bridged by M(L(I))(2)via hydrogen bonds. The magnetic properties are characterized by Néel transitions to fully compensated antiferromagnets at 2.9 K and show that 1 is a metamagnet resulting from the ferrimagnetic M(3)(μ(3)-OH)(2) chains and other two metal atoms. Complex 2 is a 3D microporous coordination framework with 2D channels. The conformation of the 1,2,4,5-cyclohexanetetracarboxylate ligands (H(4)L) of complex 2 changes from L(I) (e,a,a,e) to L(IV) (e,e,e,e). The magnetic measurement indicates spin-canted antiferromagnetic behaviour, and the adsorption measurements show that 2 can selectively adsorb CO(2) gas over N(2) gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号