首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li W  Wu G  Chua Y  Feng YP  Chen P 《Inorganic chemistry》2012,51(1):76-87
First-principles calculations show that [NH(3)] molecules play crucial roles as both activator for the break-up of B-H bond and supplier of protic H for the establishment of dihydrogen bonding, which could facilitate the dehydrogenation of Ca(NH(2)BH(3))(2)·2NH(3) or Mg(NH(2)BH(3))(2)·NH(3) occurring at lower temperatures compared to those of Ca(NH(2)BH(3))(2) and Mg(NH(2)BH(3))(2). Moreover, the calculations of Helmholtz Free energy and [NH(3)] molecule removal energy evidence that coordination between [NH(3)] and Mg cation is stronger than that between [NH(3)] and Ca cation; therefore, Mg(NH(2)BH(3))(2)·NH(3) will undergo directly dehydrogenation rather than deammoniation at lower temperatures.  相似文献   

2.
Polymerization of methyl methacrylate (MMA) initiated by the rare-earth borohydride complexes [Ln(BH(4))(3)(thf)(3)] (Ln=Nd, Sm) or [Sm(BH(4))(Cp*)(2)(thf)] (Cp*=eta-C(5)Me(5)) proceeds at ambient temperature to give rather syndiotactic poly(methyl methacrylate) (PMMA) with molar masses M(n) higher than expected and quite broad molar mass distributions, which is consistent with a poor initiation efficiency. The polymerization of MMA was investigated by performing density functional theory (DFT) calculations on an eta-C(5)H(5) model metallocene and showed that in the reaction of [Eu(BH(4))(Cp)(2)] with MMA the borate [Eu(Cp)(2){(OBH(3))(OMe)C=C(Me)(2)}] (e-2) complex, which forms via the enolate [Eu(Cp)(2){O(OMe)C=C(Me)(2)}] (e), is calculated to be exergonic and is the most likely of all of the possible products. This product is favored because the reaction that leads to the formation of carboxylate [Eu(Cp)(2){OOC-C(Me)(=CH(2))}] (f) is thermodynamically favorable, but kinetically disfavored, and both of the potential products from a Markovnikov [Eu(Cp)(2){O(OMe)C-CH(Me)(CH(2)BH(3))}] (g) or anti-Markovnikov [Eu(Cp)(2){O(OMe)C-C(Me(2))(BH(3))}] (h) hydroboration reaction are also kinetically inaccessible. Similar computational results were obtained for the reaction of [Eu(BH(4))(3)] and MMA with all of the products showing extra stabilization. The DFT calculations performed by using [Eu(Cp)(2)(H)] to model the mechanism previously reported for the polymerization of MMA initiated by [Sm(Cp*)(2)(H)](2) confirmed the favorable exergonic formation of the intermediate [Eu(Cp)(2){O(OMe)C=C(Me)(2)}] (e') as the kinetic product, this enolate species ultimately leads to the formation of PMMA as experimentally observed. Replacing H by BH(4) thus prevents the 1,4-addition of the [Eu(BH(4))(Cp)(2)] borohydride ligand to the first incoming MMA molecule and instead favors the formation of the borate complex e-2. This intermediate is the somewhat active species in the polymerization of MMA initiated by the borohydride precursors [Ln(BH(4))(3)(thf)(3)] or [Sm(BH(4))(Cp*)(2)(thf)].  相似文献   

3.
Reaction of [Pt(PEt(3))(3)] with the primary and secondary phosphine-borane adducts PhRPH x BH(3) (R=H, Ph) resulted in oxidative addition of a P-H bond at the Pt(0) center to afford the complexes trans-[PtH(PPhR x BH(3))(PEt(3))(2)] (1: R=H; 2: R=Ph). The products 1 and 2 were characterized by (1)H, (11)B, (13)C, (31)P, and (195)Pt NMR spectroscopy, and the molecular structures were verified by X-ray crystallography. In both cases, a trans arrangement of the hydride ligand with respect to the phosphidoborane ligand was observed. When 2 was treated with PhPH(2) x BH(3), a novel phosphidoborane ligand-exchange reaction occurred which yielded 1 and Ph(2)PH x BH(3). Treatment of 2 with one equivalent of depe (depe=1,2-bis(diethylphosphino)ethane) resulted in the formation of the complex cis-[PtH(PPh(2) x BH(3))(depe)] (3), in which the hydride ligand and the phosphidoborane ligand are in a cis arrangement. Treatment of 3 with PhPH(2) x BH(3) was found to result in an exchange of the phosphidoborane ligands to give the complex cis-[PtH(PPhH x BH(3))(depe)] (4) and Ph(2)PH x BH(3). Complex 4 was found to undergo further reaction in the presence of PhPH(2) x BH(3) to give meso-cis-[Pt(PPhH x BH(3))(2)(depe)] (5) and rac-cis-[Pt(PPhH x BH(3))(2)(depe)] (6).  相似文献   

4.
Reactions of β-diketiminato group 2 silylamides, [HC{(Me)CN(2,6-(i)Pr(2)C(6)H(3))}(2)M(THF)(n){N(SiMe(3))(2)}] (M = Mg, n = 0; M = Ca, Sr, n = 1), and an equimolar quantity of pyrrolidine borane, (CH(2))(4)NH·BH(3), were found to produce amidoborane derivatives of the form [HC{(Me)CN(2,6-(i)Pr(2)C(6)H(3))}(2)MN(CH(2))(4)·BH(3)]. In reactivity reminiscent of analogous reactions performed with dimethylamine borane, addition of a second equivalent of (CH(2))(4)NH·BH(3) to the Mg derivative induced the formation of a species, [HC{(Me)CN(2,6-(i)Pr(2)C(6)H(3))}(2)Mg{N(CH(2))(4) BH(2)NMe(2)BH(3)}], containing an anion in which two molecules of the amine borane substrate have been coupled together through the elimination of one molecule of H(2). Both this species and a calcium amidoborane derivative have been characterised by X-ray diffraction techniques and the coupled species is proposed as a key intermediate in catalytic amine borane dehydrocoupling, in reactivity dictated by the charge density of the group 2 centre involved. On the basis of further stoichiometric reactions of the homoleptic group 2 silylamides, [M{N(SiMe(3))(2)}(2)] (M = Mg, Ca, Sr, Ba), with (CH(3))(2)NH·BH(3) and (i)Pr(2)NH·BH(3) reactivity consistent with successive amidoborane β-hydride elimination and [R(2)N[double bond, length as m-dash]BH(2)] insertion is described as a means to induce the B-N dehydrocoupling between amine borane substrates.  相似文献   

5.
Hydrocarbon-soluble model systems for the calcium-amidoborane-ammine complex Ca(NH(2)BH(3))(2)?(NH(3))(2) were prepared and structurally characterized. The following complexes were obtained by the reaction of RNH(2)BH(3) (R = H, Me, iPr, DIPP; DIPP = 2,6-diisopropylphenyl) with Ca(DIPP-nacnac)(NH(2))?(NH(3))(2) (DIPP-nacnac = DIPP-NC(Me)CHC(Me)N-DIPP): Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3))(2), Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3))(3), Ca(DIPP-nacnac)[NH(Me)BH(3)]?(NH(3))(2), Ca(DIPP-nacnac)[NH(iPr)BH(3)]?(NH(3))(2), and Ca(DIPP-nacnac)[NH(DIPP)BH(3)]?NH(3). The crystal structure of Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3)(3) showed a NH(2)BH(3)(-) unit that was fully embedded in a network of BH???HN interactions (range: 1.97(4)-2.39(4)??) that were mainly found between NH(3) ligands and BH(3) groups. In addition, there were N-H???C interactions between NH(3) ligands and the central carbon atom in the ligand. Solutions of these calcium-amidoborane-ammine complexes in benzene were heated stepwise to 60?°C and thermally decomposed. The following main conclusions can be drawn: 1)?Competing protonation of the DIPP-nacnac anion by NH(3) was observed; 2)?The NH(3) ligands were bound loosely to the Ca(2+) ions and were partially eliminated upon heating. Crystal structures of [Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3))](∞), Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3))?(THF), and [Ca(DIPP-nacnac){NH(iPr)BH(3)}](2) were obtained. 3)?Independent of the nature of the substituent R in NH(R)BH(3), the formation of H(2) was observed at around 50?°C. 4)?In all cases, the complex [Ca(DIPP-nacnac)(NH(2))](2) was formed as a major product of thermal decomposition, and its dimeric nature was confirmed by single-crystal analysis. We proposed that thermal decomposition of calcium-amidoborane-ammine complexes goes through an intermediate calcium-hydride-ammine complex which eliminates hydrogen and [Ca(DIPP-nacnac)(NH(2))](2). It is likely that the formation of metal amides is also an important reaction pathway for the decomposition of metal-amidoborane-ammine complexes in the solid state.  相似文献   

6.
The Lewis acid cyclohexylbis(pentafluorophenyl)boron 1, which exhibits about 15% lower Lewis acidity in comparison with B(C(6)F(5))(3), activates H(2) in the presence of the bulky Lewis bases 2,2,6,6-tetramethylpiperidine (TMP), 1,2,2,6,6-pentamethylpiperidine (PMP), tri-tert-butylphosphine (t-Bu(3)P) leading in facile reactions at room temperature to heterolytic splitting of dihydrogen and formation of the salts [TMPH][CyBH(C(6)F(5))(2)] 2, [PMPH][CyBH(C(6)F(5))(2)] 3 and [t-Bu(3)PH][CyBH(C(6)F(5))(2)] 4, which could be dehydrogenated at higher temperatures. The related Lewis acid 1-phenyl-2-[bis(pentafluorophenyl)boryl]ethane 5 exhibiting about 10% lower Lewis acidity than B(C(6)F(5))(3) is also capable of splitting H(2) in a heterolytic fashion in the presence of TMP, PMP and t-Bu(3)P yielding [TMPH][PhC(2)H(4)BH(C(6)F(5))(2)] 6, [PMPH][PhC(2)H(4)BH(C(6)F(5))(2)] 7 and [t-Bu(3)PH][PhC(2)H(4)BH(C(6)F(5))(2)] 8. Under comparable conditions as for 2-4, the dehydrogenations of 6-8 were much slower. 4b and 6 were characterized by single crystal X-ray diffraction studies.  相似文献   

7.
The new divalent thulium compound [Tm(BH(4))(2)(DME)(2)] could be prepared by reduction of [Tm(BH(4))(3)(THF)(3)] or from TmI(2) and KBH(4). It was used as a precursor to the divalent [(Tp(tBu,Me))Tm(BH(4))(THF)] by reaction with potassium tris(2-tBu-4-Me)pyrazolylborate (KTp(tBu,Me)). Both Tm(II) compounds were found active as ε-caprolactone polymerisation catalysts.  相似文献   

8.
A reaction of trans-[Ir(4-C(5)NF(4))(η(2)-C(2)H(4))(PiPr(3))(2)] (1) with an excess of water in THF at room temperature affords the hydrido hydroxo complex trans-[Ir(4-C(5)NF(4))(H)(OH)(PiPr(3))(2)] (2). Treatment of 2 with CO furnishes trans-[Ir(4-C(5)NF(4))(H)(OH)(CO)(PiPr(3))(2)] (3). Reductive elimination of water from 3 leads to the formation of the iridium(I) carbonyl complex trans-[Ir(4-C(5)NF(4))(CO)(PiPr(3))(2)] (4). The insertion of CO(2) into the Ir-O bond of 2 forms the hydrido hydrogencarbonato complex trans-[Ir(4-C(5)NF(4))(H)(κ(2)-(O,O)-O(2)COH)(PiPr(3))(2)] (5). Treatment of 2 with NH(3) in C(6)D(6) yields trans-[Ir(4-C(5)NF(4))(H)(OH)(NH(3))(PiPr(3))(2)] (6). Storage of the reaction mixture at room temperature reveals the formation of the N-H activation product [Ir(4-C(5)NF(4))(H)(μ-NH(2))(NH(3))(PiPr(3))](2) (7).  相似文献   

9.
Titanium-phosphorus frustrated Lewis pairs (FLPs) based on titanocene-phosphinoaryloxide complexes have been synthesised. The cationic titanium(IV) complex [Cp(2)TiOC(6)H(4)P((t)Bu)(2)][B(C(6)F(5))(4)] 2 reacts with hydrogen to yield the reduced titanium(III) complex [Cp(2)TiOC(6)H(4)PH((t)Bu)(2)][B(C(6)F(5))(4)] 5. The titanium(III)-phosphorus FLP [Cp(2)TiOC(6)H(4)P((t)Bu)(2)] 6 has been synthesised either by chemical reduction of [Cp(2)Ti(Cl)OC(6)H(4)P((t)Bu)(2)] 1 with [CoCp*(2)] or by reaction of [Cp(2)Ti{N(SiMe(3))(2)}] with 2-C(6)H(4)(OH){P((t)Bu)(2)}. Both 2 and 6 catalyse the dehydrogenation of Me(2)HN·BH(3).  相似文献   

10.
The reaction of a slurry of BaBr(2) in a minimal amount of tetrahydrofuran (THF) with 2 equiv of Na(H(3)BNMe(2)BH(3)) in diethyl ether followed by crystallization from diethyl ether at -20 °C yields crystals of Ba(H(3)BNMe(2)BH(3))(2)(Et(2)O)(2) (1). Drying 1 at room temperature under vacuum gives the partially desolvated analogue Ba(H(3)BNMe(2)BH(3))(2)(Et(2)O)(x) (1') as a free-flowing white solid, where the value of x varies from <0.1 to about 0.4 depending on whether desolvation is carried out with or without heating. The reaction of 1 or 1' with Lewis bases that bind more strongly to barium than diethyl ether results in the formation of new complexes Ba(H(3)BNMe(2)BH(3))(2)(L), where L = 1,2-dimethoxyethane (2), N,N,N',N'-tetramethylethylenediamine (3), 12-crown-4 (4), 18-crown-6 (5), N,N,N',N'-tetraethylethylenediamine (6), and N,N,N',N",N"-pentamethylethylenetriamine (7). Recrystallization of 4 and 5 from THF affords the related compounds Ba(H(3)BNMe(2)BH(3))(2)(12-crown-4)(THF)·THF (4') and Ba(H(3)BNMe(2)BH(3))(2)(18-crown-6)·2THF (5'). In addition, the reaction of BaBr(2) with 2 equiv of Na(H(3)BNMe(2)BH(3)) in the presence of diglyme yields Ba(H(3)BNMe(2)BH(3))(2)(diglyme)(2) (8), and the reaction of 1 with 15-crown-5 affords the diadduct [Ba(15-crown-5)(2)][H(3)BNMe(2)BH(3)](2) (9). Finally, the reaction of BaBr(2) with Na(H(3)BNMe(2)BH(3)) in THF, followed by the addition of 12-crown-4, affords the unusual salt [Na(12-crown-4)(2)][Ba(H(3)BNMe(2)BH(3))(3)(THF)(2)] (10). All of these complexes have been characterized by IR and (1)H and (11)B NMR spectroscopy, and the structures of compounds 1-3, 4', 5', and 6-10 have been determined by single-crystal X-ray diffraction. As the steric demand of the Lewis bases increases, the structure changes from polymers to dimers to monomers and then to charge-separated species. Despite the fact that several of the barium complexes are monomeric in the solid state, none is appreciably volatile up to 200 °C at 10(-2) Torr.  相似文献   

11.
Single crystals of the meta- and para-phenylene-bridged ditopic trihydridoborates (Li(THF)(2))(2)[m-C(6)H(4)(BH(3))(2)] and (Li(THF)(2))(2)[p-C(6)H(4)(BH(3))(2)] have been prepared and investigated by X-ray crystallography. The compounds turned out to be coordination polymers in which each trihydridoborate substituent is connected with one trihydridoborate substituent of a neighbouring monomer via two bridging Li(THF)(2)(+) ions. (Li(THF)(2))(2)[m-C(6)H(4)(BH(3))(2)] and (Li(THF)(2))(2)[p-C(6)H(4)(BH(3))(2)] suffer from poor solubility in all common non-protic solvents. Thus, a more soluble derivative of (Li(THF)(2))(2)[p-C(6)H(4)(BH(3))(2)], equipped with n-hexyl groups at the positions 2 and 5 of the phenylene ring, has been used for all further investigations (i.e., compound Li(2)[6]). Treatment of Li(2)[6] with Me(3)SiCl in the presence of excess N(Me)(2)Et leads to the abstraction of one hydride ion per boron atom under formation of the ditopic amine-borane adduct p-C(6)H(2)(n-hexyl)(2)(BH(2)-N(Me)(2)Et)(2) (7). The compound turned out to be an efficient hydroboration reagent both for internal olefins (i.e., 1,5-cyclooctadiene) and terminal alkynes (i.e., tert-butyl acetylene) to give p-C(6)H(2)(n-hexyl)(2)(9-BBN)(2) (8; 9-BBN = 9-borabicyclo[3.3.1]nonyl) and p-C(6)H(2)(n-hexyl)(2)(B(C(H)=C(H)tBu)(2))(2) (9), respectively.  相似文献   

12.
The first cationic main group tetrahydroborate complexes are reported. [Ca(BH(4))(THF)(5)][BPh(4)] and the charge neutral (Tp((t)Bu,Me))Ca(BH(4))(THF) are initiators for the living ring opening polymerization of rac-lactide, the latter producing PLA with high levels of heterotactic enrichment. These represent a new class of ROP initiators for main group metals.  相似文献   

13.
The targeted hydrolysis of the 9,10-dihydro-9,10-diboraanthracene adduct (Me(2)S)HB(C(6)H(4))(2)BH(SMe(2)) (1) with 0.5 equiv of H(2)O leads to formation of the borinic acid anhydride [(Me(2)S)HB(C(6)H(4))(2)B](2)O (2) and thereby provides access to the field of unsymmetrically substituted 9,10-dihydro-9,10-diboraanthracenes. Compound 2 reacts with tBuC≡CH to give the corresponding vinyl derivative in an essentially quantitative conversion. Subsequent cleavage of the B-O-B bridge by LiAlH(4) with formation of hydridoborate functionalities is possible but is accompanied by partial B-C(vinyl) bond degradation. This situation changes when the related mesityl derivative [MesB(C(6)H(4))(2)B](2)O (7) is employed, which can be synthesized from BrB(C(6)H(4))(2)BBr (6) by treatment with 1 equiv of MesMgBr and subsequent hydrolysis. The reaction of 7 with LiAlH(4) in tetrahydrofuran (THF) furnishes Li[MesB(C(6)H(4))(2)BH(2)] (8); hydride elimination with Me(3)SiCl leads to formation of the THF adduct MesB(C(6)H(4))(2)BH(THF) (9·THF). Alternatively, 7 can be transformed into the bromoborane MesB(C(6)H(4))(2)BBr (10) by treatment with BBr(3). A Br/H-exchange reaction between 10 and Et(3)SiH yields the donor-free borane MesB(C(6)H(4))(2)BH (9), which forms B-H-B bridged dimers (9)(2) in the solid state. The vinyl borane MesB(C(6)H(4))(2)BC(H)=C(H)Mes (14) is accessible from MesC≡CH and either 9·THF or 9. Compared with the related compound Mes(2)BC(H)=C(H)Mes, the electronic absorption and emission spectra of 14 reveal bathochromic shifts of Δλ(abs)=17 nm and Δλ(em)=74 nm, which can be attributed to the rigid, fully delocalized π framework of the [MesB(C(6)H(4))(2)B] chromophore.  相似文献   

14.
The reaction of [AuCl(PR(3))] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] in refluxing ethanol proceeds with partial degradation (removal of a boron atom adjacent to carbon) of the closo species to give [Au{(PPh(2))(2)C(2)B(9)H(10)}(PR(3))] [PR(3) = PPh(3) (1), PPh(2)Me (2), PPh(2)(4-Me-C(6)H(4)) (3), P(4-Me-C(6)H(4))(3) (4), P(4-OMe-C(6)H(4))(3) (5)]. Similarly, the treatment of [Au(2)Cl(2)(&mgr;-P-P)] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] under the same conditions leads to the complexes [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-P-P)] [P-P = dppe = 1,2-bis(diphenylphosphino)ethane (6), dppp = 1,3-bis(diphenylphosphino)propane (7)], where the dppe or dppp ligands bridge two gold nido-diphosphine units. The reaction of 1 with NaH leads to removal of one proton, and further reaction with [Au(PPh(3))(tht)]ClO(4) gives the novel metallocarborane compound [Au(2){(PPh(2))(2)C(2)B(9)H(9)}(PPh(3))(2)] (8). The structure of complexes 1 and 7 have been established by X-ray diffraction. [Au{(PPh(2))(2)C(2)B(9)H(10)}(PPh(3))] (1) (dichloromethane solvate) crystallizes in the monoclinic space group P2(1)/c, with a = 17.326(3) ?, b = 20.688(3) ?, c = 13.442(2) ?, beta = 104.710(12) degrees, Z = 4, and T = -100 degrees C. [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-dppp)] (7) (acetone solvate) is triclinic, space group P&onemacr;, a = 13.432(3) ?, b = 18.888(3) ?, c = 20.021(3) ?, alpha = 78.56(2) degrees, beta = 72.02(2) degrees, gamma = 73.31(2) degrees, Z = 2, and T = -100 degrees C. In both complexes the gold atom exhibits trigonal planar geometry with the 7,8-bis(diphenylphosphino)-7,8-dicarba-nido-undecaborate(1-) acting as a chelating ligand.  相似文献   

15.
A new organically templated layered uranium phosphate fluoride, [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)][(UO(2))(2)F(2)(HPO(4))(2)] has been synthesized by hydrothermal reaction of UO(3), H(3)PO(4), HF, and (CH(3))(2)NCH(2)CH(2)N(CH(3))(2) at 140 degrees C. [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)][(UO(2))(2)F(2)(HPO(4))(2)] has a layered crystal structure consisting of seven-coordinated UO(5)F(2) pentagonal bipyramids and four-coordinated HPO(4) tetrahedra. Each anionic layer containing three-, four-, and six-membered rings is separated by [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)](2+) cations. The [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)](2+) cations may be readily exchanged with the M(2+) ions (M = Ba, Sr and Ca) in water to give high crystalline AE(UO(2))(2)(PO(4))(2).6H(2)O (AE = Ca, Sr, Ba).  相似文献   

16.
A reaction of trans-[Ir(H)(5)(PiPr(3))(2)] (1) with 2,3,5,6-tetrafluoropyridine, pentafluorobenzene or 1,3-difluorobenzene in the presence of neohexene affords the square-pyramidal C-H activation products cis-trans-[Ir(4-C(5)NF(4))(H)(2)(PiPr(3))(2)] (2), cis-trans-[Ir(C(6)F(5))(H)(2)(PiPr(3))(2)] (4) and cis-trans-[Ir(2-C(6)H(3)F(2))(H)(2)(PiPr(3))(2)] (6). Irradiation of complex 1 with 2,3,5,6-tetrafluoropyridine or pentafluorobenzene gave the hydrides cis-trans-[Ir(4-C(5)NF(4))(H)(2)(H(2))(PiPr(3))(2)] (3) or cis-trans-[Ir(C(6)F(5))(H)(2)(H(2))(PiPr(3))(2)] (5). The presence of non-classical bound H(2) moieties has been demonstrated by the measurement of T(1) times at different temperatures. For 3 the H-H distance in the H(2) ligand can be estimated to be 0.82 A. The dihydride compounds 2, 4 and 6 react with CO to yield the complexes cis-trans-[Ir(Ar)(H)(2)(CO)(PiPr(3))(2)] (7: Ar = 4-C(5)NF(4), 8: Ar = C(6)F(5), 9: Ar = 2-C(6)H(3)F(2)). A reaction of 2 or 3 with an excess of ethylene leads to the formation of ethane and the Ir(i) ethylene complex trans-[Ir(4-C(5)NF(4))(eta(2)-C(2)H(4))(PiPr(3))(2)] (10). Treatment of 10 with CO furnishes the Ir(i) complex trans-[Ir(4-C(5)NF(4))(CO)(PiPr(3))(2)] (11).  相似文献   

17.
The reaction of AgClO(4) and NH(3) in acetone gave [Ag(NH=CMe(2))(2)]ClO(4) (1). The reactions of 1 with [RhCl(diolefin)](2) or [RhCl(CO)(2)](2) (2:1) gave the bis(acetimine) complexes [Rh(diolefin)(NH=CMe(2))(2)]ClO(4) [diolefin = 1,5 cyclooctadiene = cod (2), norbornadiene = nbd (3)] or [Rh(CO)(2)(NH=CMe(2))(2)]ClO(4) (4), respectively. Mono(acetimine) complexes [Rh(diolefin)(NH=CMe(2))(PPh(3))]ClO(4) [diolefin = cod (5), nbd (6)] or [RhCl(diolefin)(NH=CMe(2))] [diolefin = cod (7), nbd (8)] were obtained by reacting 2 or 3 with PPh(3) (1:1) or with Me(4)NCl (1:1.1), respectively. The reaction of 4 with PR(3) (R = Ph, To, molar ratio 1:2) led to [Rh(CO)(NH=CMe(2))(PR(3))(2)]ClO(4) [R = Ph (9), C(6)H(4)Me-4 = To (10)] while cis-[Rh(CO)(NH=CMe(2))(2)(PPh(3))]ClO(4) (11) was isolated from the reaction of 1 with [RhCl(CO)(PPh(3))](2) (1:1). The crystal structures of 5 and [Ag[H(2)NC(Me)(2)CH(2)C(O)Me](PTo(3))]ClO(4) (A), a product obtained in a reaction between NH(3), AgClO(4), and PTo(3), have been determined.  相似文献   

18.
We describe the successful synthesis of the first mixed-cation (pseudoternary) amidoborane, Na[Li(NH(2)BH(3))(2)], with theoretical hydrogen capacity of 11.1 wt%. Na[Li(NH(2)BH(3))(2)] crystallizes triclinic (P1) with a = 5.0197(4) ?, b = 7.1203(7) ?, c = 8.9198(9) ?, α = 103.003(6)°, β = 102.200(5)°, γ = 103.575(5)°, and V = 289.98(5) ?(3) (Z = 2), as additionally confirmed by Density Functional Theory calculations. Its crystal structure is topologically different from those of its orthorhombic LiNH(2)BH(3) and NaNH(2)BH(3) constituents, with distinctly different coordination spheres of Li (3 N atoms and 1 hydride anion) and Na (6 hydride anions). Na[Li(NH(2)BH(3))(2)], which may be viewed as a product of a Lewis acid (LiNH(2)BH(3))/Lewis base (NaNH(2)BH(3)) reaction, is an important candidate for a novel lightweight hydrogen storage material. The title material decomposes at low temperature (with onset at 75 °C, 6.0% mass loss up to 110 °C, and an additional 3.0% up to 200 °C) while evolving hydrogen contaminated with ammonia.  相似文献   

19.
2-Phosphanylethylcyclopentadienyl lithium compounds, Li[C(5)R'(4)(CH(2))(2)PR(2)] (R = Et, R' = H or Me, R = Ph, R' = Me), have been prepared from the reaction of spirohydrocarbons C(5)R'(4)(C(2)H(4)) with LiPR(2). C(5)Et(4)HSiMe(2)CH(2)PMe(2), was prepared from reaction of Li[C(5)Et(4)] with Me(2)SiCl(2) followed by Me(2)PCH(2)Li. The lithium salts were reacted with [RhCl(CO)(2)](2), [IrCl(CO)(3)] or [Co(2)(CO)(8)] to give [M(C(5)R'(4)(CH(2))(2)PR(2))(CO)] (M = Rh, R = Et, R' = H or Me, R = Ph, R' = Me; M = Ir or Co, R = Et, R' = Me), which have been fully characterised, in many cases crystallographically as monomers with coordination of the phosphorus atom and the cyclopentadienyl ring. The values of nu(CO) for these complexes are usually lower than those for the analogous complexes without the bridge between the cyclopentadienyl ring and the phosphine, the exception being [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (Cp' = C(5)Me(4)), the most electron rich of the complexes. [Rh(C(5)Et(4)SiMe(2)CH(2)PMe(2))(CO)] may be a dimer. [Co(2)(CO)(8)] reacts with C(5)H(5)(CH(2))(2)PEt(2) or C(5)Et(4)HSiMe(2)CH(2)PMe(2) (L) to give binuclear complexes of the form [Co(2)(CO)(6)L(2)] with almost linear PCoCoP skeletons. [Rh(Cp'(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are active for methanol carbonylation at 150 degrees C and 27 bar CO, with the rate using [Rh(Cp'(CH(2))(2)PPh(2))(CO)] (0.81 mol dm(-3) h(-1)) being higher than that for [RhI(2)(CO)(2)](-) (0.64 mol dm(-3) h(-1)). The most electron rich complex, [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (0.38 mol dm(-3) h(-1)) gave a comparable rate to [Cp*Rh(PEt(3))(CO)] (0.30 mol dm(-3) h(-1)), which was unstable towards oxidation of the phosphine. [Rh(Cp'(CH(2))(2)PEt(2))I(2)], which is inactive for methanol carbonylation, was isolated after the methanol carbonylation reaction using [Rh(Cp'(CH(2))(2)PEt(2))(CO)]. Neither of [M(Cp'(CH(2))(2)PEt(2))(CO)] (M = Co or Ir) was active for methanol carbonylation under these conditions, nor under many other conditions investigated, except that [Ir(Cp'(CH(2))(2)PEt(2))(CO)] showed some activity at higher temperature (190 degrees C), probably as a result of degradation to [IrI(2)(CO)(2)](-). [M(Cp'(CH(2))(2)PEt(2))(CO)] react with MeI to give [M(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] (M = Co or Rh) or [Ir(Cp'(CH(2))(2)PEt(2))Me(CO)]I. The rates of oxidative addition of MeI to [Rh(C(5)H(4)(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are 62 and 1770 times faster than to [Cp*Rh(CO)(2)]. Methyl migration is slower, however. High pressure NMR studies show that [Co(Cp'(CH(2))(2)PEt(2))(CO)] and [Cp*Rh(PEt(3))(CO)] are unstable towards phosphine oxidation and/or quaternisation under methanol carbonylation conditions, but that [Rh(Cp'(CH(2))(2)PEt(2))(CO)] does not exhibit phosphine degradation, eventually producing inactive [Rh(Cp'(CH(2))(2)PEt(2))I(2)] at least under conditions of poor gas mixing. The observation of [Rh(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] under methanol carbonylation conditions suggests that the rhodium centre has become so electron rich that reductive elimination of ethanoyl iodide has become rate determining for methanol carbonylation. In addition to the high electron density at rhodium.  相似文献   

20.
The abstraction of the Lewis acid from [W(CO)(5)(PH(2)BH(2)NMe(3))] (1) by an excess of P(OMe(3))(3) leads to the quantitative formation of the first Lewis base stabilized monomeric parent compound of phosphanylborane [H(2)PBH(2)NMe(3)] 2. Density functional theory (DFT) calculations have shown a low energetic difference between the crystallographically determined antiperiplanar arrangement of the lone pair and the trimethylamine group relative to the P-B core and the synperiplanar conformation. Subsequent reactions with the main-group Lewis acid BH(3) as well as with an [Fe(CO)(4)] unit as a transition-metal Lewis acid led to the formation of [(BH(3))PH(2)BH(2)NMe(3)] (3), containing a central H(3)B-PH(2)-BH(2) unit, and [Fe(CO)(4)(PH(2)BH(2)NMe(3))] (4), respectively. In oxidation processes with O(2), Me(3)NO, elemental sulfur, and selenium, the boranylphosphine chalcogenides [H(2)P(Q)BH(2)NMe(3)] (Q = S 5 b; Se 5 c) as well as the novel boranyl phosphonic acid [(HO)(2)P(O)BH(2)NMe(3)] (6 a) are formed. All products have been characterized by spectroscopic as well as by single-crystal X-ray structure analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号