首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We quantify the scaling of magnetic energy density in the inertial range of solar-wind turbulence seen in situ at 1 AU with respect to solar activity. At solar maximum, when the coronal magnetic field is dynamic and topologically complex, we find self-similar scaling in the solar wind, whereas at solar minimum, when the coronal fields are more ordered, we find multifractality. This quantifies the solar-wind signature that is of direct coronal origin and distinguishes it from that of local MHD turbulence, with quantitative implications for coronal heating of the solar wind.  相似文献   

2.
In the past decades, there has been an increasing literature on the presence of an inertial energy cascade in interplanetary space plasma, being interpreted as the signature of Magnetohydrodynamic turbulence (MHD) for both fields and passive scalars. Here, we investigate the passive scalar nature of the solar wind proton density and temperature by looking for scaling features in the mixed-scalar third-order structure functions using measurements on-board the Ulysses spacecraft during two different periods, i.e., an equatorial slow solar wind and a high-latitude fast solar wind, respectively. We find a linear scaling of the mixed third-order structure function as predicted by Yaglom’s law for passive scalars in the case of slow solar wind, while the results for fast solar wind suggest that the mixed fourth-order structure function displays a linear scaling. A simple empirical explanation of the observed difference is proposed and discussed.  相似文献   

3.
The first direct determination of the inertial range energy cascade rate, using an anisotropic form of Yaglom's law for magnetohydrodynamic turbulence, is obtained in the solar wind with multispacecraft measurements. The two-point mixed third-order structure functions of Els?sser fluctuations are integrated over a sphere in magnetic field-aligned coordinates, and the result is consistent with a linear scaling. Therefore, volume integrated heating and cascade rates are obtained that, unlike previous studies, make only limited assumptions about the underlying spectral geometry of solar wind turbulence. These results confirm the turbulent nature of magnetic and velocity field fluctuations in the low frequency limit, and could supply the energy necessary to account for the nonadiabatic heating of the solar wind.  相似文献   

4.
Direct evidence for the presence of an inertial energy cascade, the most characteristic signature of hydromagnetic turbulence (MHD), is observed in the solar wind by the Ulysses spacecraft. After a brief rederivation of the equivalent of Yaglom's law for MHD turbulence, a linear relation is indeed observed for the scaling of mixed third-order structure functions involving Els?sser variables. This experimental result firmly establishes the turbulent character of low-frequency velocity and magnetic field fluctuations in the solar wind plasma.  相似文献   

5.
We present the first measurement of the scale-dependent power anisotropy of Elsasser variables in imbalanced fast solar wind turbulence. The dominant Elsasser mode is isotropic at lower spacecraft frequencies but becomes increasingly anisotropic at higher frequencies. The subdominant mode is anisotropic throughout. There are two distinct subranges exhibiting different scalings within what is normally considered the inertial range. The low Alfvén ratio and the different scaling of the Elsasser modes suggests an interpretation of the observed discrepancy between the velocity and magnetic field scalings, the total energy is dominated by the latter. These results do not appear to be fully explained by any of the current theories of incompressible imbalanced MHD turbulence.  相似文献   

6.
We present a quantitative estimate of the anisotropic power and scaling of magnetic field fluctuations in inertial range magnetohydrodynamic turbulence, using a novel wavelet technique applied to spacecraft measurements in the solar wind. We show for the first time that, when the local magnetic field direction is parallel to the flow, the spacecraft-frame spectrum has a spectral index near 2. This can be interpreted as the signature of a population of fluctuations in field-parallel wave numbers with a k(-2)_(||) spectrum but is also consistent with the presence of a "critical balance" style turbulent cascade. We also find, in common with previous studies, that most of the power is contained in wave vectors at large angles to the local magnetic field and that this component of the turbulence has a spectral index of 5/3.  相似文献   

7.
Recent measurements of solar wind turbulence report the presence of intermittent, exponentially distributed angular discontinuities in the magnetic field. In this Letter, we study whether such discontinuities can be produced by magnetohydrodynamic (MHD) turbulence. We detect the discontinuities by measuring the fluctuations of the magnetic field direction, Δθ, across fixed spatial increments Δx in direct numerical simulations of MHD turbulence with an imposed uniform guide field B(0). A large region of the probability density function (pdf) for Δθ is found to follow an exponential decay, proportional to exp(-Δθ/θ(*)), with characteristic angle θ(*)≈(14°)(b(rms)/B(0))(0.65) for a broad range of guide-field strengths. We find that discontinuities observed in the solar wind can be reproduced by MHD turbulence with reasonable ratios of b(rms)/B(0). We also observe an excess of small angular discontinuities when Δx becomes small, possibly indicating an increasing statistical significance of dissipation-scale structures. The structure of the pdf in this case closely resembles the two-population pdf seen in the solar wind. We thus propose that strong discontinuities are associated with inertial-range MHD turbulence, while weak discontinuities emerge from dissipation-range turbulence. In addition, we find that the structure functions of the magnetic field direction exhibit anomalous scaling exponents, which indicates the existence of intermittent structures.  相似文献   

8.
In this paper we investigate the scaling properties of three-dimensional isotropic and homogeneous turbulence. We analyze a new form of scaling (extended self-similarity) recently introduced in the literature. We found that anomalous scaling of the velocity structure functions is clearly detectable even at a moderate and low Reynolds number and it extends over a much wider range of scales with respect to the inertial range.  相似文献   

9.
In this paper we give a formulation of two-dimensional (2D) collisionless magnetohydrodynamic (MHD) turbulence that includes the effects of both electron inertia and electron pressure (or parallel electron compressibility) and is applicable to strongly magnetized collisionless plasmas. We place particular emphasis on the departures from the 2D classical MHD turbulence results produced by the collisionless MHD effects. We investigate the fractal/multi-fractal aspects of spatial intermittency. The fractal model for intermittent collisionless MHD turbulence appears to be able to describe the observed k−1 spectrum in the solar wind. Multi-fractal scaling behaviors in the inertial range are first deduced, and are then extrapolated down to the dissipative microscales. We then consider a parabolic-profile model for the singularity spectrum f (α), as an explicit example of a multi-fractal scenario. These considerations provide considerable insights into the basic mechanisms underlying spatial intermittency in 2D fully developed collisionless MHD turbulence.  相似文献   

10.
Compressible turbulence: the cascade and its locality   总被引:1,自引:0,他引:1  
We prove that interscale transfer of kinetic energy in compressible turbulence is dominated by local interactions. In particular, our results preclude direct transfer of kinetic energy from large-scales to dissipation scales, such as into shocks, in high Reynolds number turbulence as is commonly believed. Our assumptions on the scaling of structure functions are weak and enjoy compelling empirical support. Under a stronger assumption on pressure dilatation cospectrum, we show that mean kinetic and internal energy budgets statistically decouple beyond a transitional conversion range. Our analysis establishes the existence of an ensuing inertial range over which mean subgrid scale kinetic energy flux becomes constant, independent of scale. Over this inertial range, mean kinetic energy cascades locally and in a conservative fashion despite not being an invariant.  相似文献   

11.
We show the first three dimensional (3D) dispersion relations and k spectra of magnetic turbulence in the solar wind at subproton scales. We used the Cluster data with short separations and applied the k-filtering technique to the frequency range where the transition to subproton scales occurs. We show that the cascade is carried by highly oblique kinetic Alfvén waves with ω(plas) ≤ 0.1ω(ci) down to k(⊥) ρ(i)~2. Each k spectrum in the direction perpendicular to B0 shows two scaling ranges separated by a breakpoint (in the interval [0.4,1]k(⊥)ρ(i): a Kolmogorov scaling k(⊥)?1?? followed by a steeper scaling ~k(⊥)????. We conjecture that the turbulence undergoes a transition range, where part of the energy is dissipated into proton heating via Landau damping and the remaining energy cascades down to electron scales where electron Landau damping may predominate.  相似文献   

12.
A key prediction of turbulence theories is frame-invariance, and in magnetohydrodynamic (MHD) turbulence, axisymmetry of fluctuations with respect to the background magnetic field. Paradoxically the power in fluctuations in the turbulent solar wind are observed to be ordered with respect to the bulk macroscopic flow as well as the background magnetic field. Here, nonaxisymmetry across the inertial and dissipation ranges is quantified using in situ observations from Cluster. The observed inertial range nonaxisymmetry is reproduced by a "fly through" sampling of a direct numerical simulation of MHD turbulence. Furthermore, fly through sampling of a linear superposition of transverse waves with axisymmetric fluctuations generates the trend in nonaxisymmetry with power spectral exponent. The observed nonaxisymmetric anisotropy may thus simply arise as a sampling effect related to Taylor's hypothesis and is not related to the plasma dynamics itself.  相似文献   

13.
Magnetohydrodynamic (MHD) turbulence in the solar wind is observed to show the spectral behavior of classical Kolmogorov fluid turbulence over an inertial subrange and departures from this at short wavelengths, where energy should be dissipated. Here we present the first measurements of the electric field fluctuation spectrum over the inertial and dissipative wave number ranges in a Beta > or approximately = 1 plasma. The k(-5/3) inertial subrange is observed and agrees strikingly with the magnetic fluctuation spectrum; the wave phase speed in this regime is shown to be consistent with the Alfvén speed. At smaller wavelengths krho(i) > or = 1 the electric spectrum is enhanced and is consistent with the expected dispersion relation of short-wavelength kinetic Alfvén waves. Kinetic Alfvén waves damp on the solar wind ions and electrons and may act to isotropize them. This effect may explain the fluidlike nature of the solar wind.  相似文献   

14.
We report measurements of the Lagrangian velocity structure functions of orders 1 through 10 in a high Reynolds number (Taylor microscale Reynolds numbers of up to R(lambda) = 815 ) turbulence experiment. Passive tracer particles are tracked optically in three dimensions and in time, and velocities are calculated from the particle tracks. The structure function anomalous scaling exponents are measured both directly and using extended self-similarity and are found to be more intermittent than their Eulerian counterparts. Classical Kolmogorov inertial range scaling is also found for all structure function orders at times that trend downward as the order increases. The temporal shift of this classical scaling behavior is observed to saturate as the structure function order increases at times shorter than the Kolmogorov time scale.  相似文献   

15.
The scaling properties of three-dimensional magnetohydrodynamic turbulence with finite magnetic helicity are obtained from direct numerical simulations using 512(3) modes. The results indicate that the turbulence does not follow the Iroshnikov-Kraichnan phenomenology. The scaling exponents of the structure functions can be described by a modified She-Leveque model zeta(p) = p/9+1-(1/3)(p/3), corresponding to basic Kolmogorov scaling and sheetlike dissipative structures. In particular, we find zeta(2) approximately 0.7, consistent with the energy spectrum E(k) approximately k(-5/3) as observed in the solar wind, and zeta(3) approximately 1, confirming a recent analytical result.  相似文献   

16.
The time behaviors of intermittent turbulence in Gledzer-Ohkitani-Yamada model are investigated. Two kinds of orbits of each shell which is in the inertial range are discussed by portrait analysis in phase space. We find intermittent orbit parts wandering randomly and the directions of unstable quasi-periodic orbit parts of different shellsform rotational, reversal and locked cascade of period three with shell number. We calculate the critical scaling of intermittent turbulence and the extended self-similarity of the two parts of orbit and point out that nonlinear scaling in inertial-range is decided by intermittent orbit parts.  相似文献   

17.
The time behaviors of intermittent turbulence in Gledzer-Ohkitani-Yamada model are investigated. Two kinds of orbits of each shell which is in the inertial range are discussed by portrait analysis in phase space. We find intermittent orbit parts wandering randomly and the directions of unstable quasi-periodic orbit parts of different shells form rotational, reversal and locked cascade of period three with shell number. We calculate the critical scaling of intermittent turbulence and the extended self-similarity of the two parts of orbit and point out that nonlinear scaling in inertial-range is decided by intermittent orbit parts.  相似文献   

18.
We develop a theory of turbulence based on the Navier-Stokes equation, without using dimensional or phenomenological considerations. A small scale vortex filament is the main element of the theory. The theory allows to obtain the scaling law and to calculate the scaling exponents of Lagrangian and Eulerian velocity structure functions in the inertial range. The obtained results are shown to be in very good agreement with numerical simulations and experimental data. The introduction of stochasticity into the equations and derivation of scaling exponents are discussed in details. A weak dependence on statistical propositions is demonstrated. The relation of the theory to the multifractal model is discussed.  相似文献   

19.
We report experimental evidence of spatial clustering of dense particles in homogenous, isotropic turbulence at high Reynolds numbers. The dissipation-scale clustering becomes stronger as the Stokes number increases and is found to exhibit similarity with respect to the droplet Stokes number over a range of experimental conditions (particle diameter and turbulent energy dissipation rate). These findings are in qualitative agreement with recent theoretical and computational studies of inertial particle clustering in turbulence. Because of the large Reynolds numbers a broad scaling range of particle clustering due to turbulent mixing is present, and the inertial clustering can clearly be distinguished from that due to mixing of fluid particles.  相似文献   

20.
A three-dimensional, nonlinear gyrokinetic simulation of plasma turbulence resolving scales from the ion to electron gyroradius with a realistic mass ratio is presented, where all damping is provided by resolved physical mechanisms. The resulting energy spectra are quantitatively consistent with a magnetic power spectrum scaling of k(-2.8) as observed in in situ spacecraft measurements of the "dissipation range" of solar wind turbulence. Despite the strongly nonlinear nature of the turbulence, the linear kinetic Alfvén wave mode quantitatively describes the polarization of the turbulent fluctuations. The collisional ion heating is measured at subion-Larmor radius scales, which provides evidence of the ion entropy cascade in an electromagnetic turbulence simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号