首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《印度化学会志》2023,100(4):100959
The polymer-ceramic composite electrolytes have great application potential for next-generation solid state lithium batteries, as they have the merits to eliminate the problem of liquid organic electrolytes and enhancing chemical/electrochemical stability. However, polymer-ceramic composite electrolytes show poor ionic conductivity, which greatly hinders their practical applications. In this work, the addition of plasticizer ethylene carbonate (EC) into polymer-ceramic composite electrolyte for lithium batteries effectively promotes the ionic conductivity. A high ionic conductivity can be attained by adding 40 wt% EC to the polyethylene oxide (PEO)/polyvinylidene fluoride (PVDF)-Li7La3Zr2O12 (LLZO) based polymer-ceramic composite electrolytes, which is 2.64 × 10−4 S cm−1 (tested at room temperature). Furthermore, the cell assembled with lithium metal anode, this composite electrolyte, and LiFePO4 cathode can work more than 80 cycles at room temperature (tested at 0.2 C). The battery delivers a high reversible specific capacity after 89 cycles, which is 119 mAh g−1.  相似文献   

2.
Li+‐conducting oxides are considered better ceramic fillers than Li+‐insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+‐insulating oxides (fluorite Gd0.1Ce0.9O1.95 and perovskite La0.8Sr0.2Ga0.8Mg0.2O2.55) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)‐based polymer composite electrolytes, each with a Li+ conductivity above 10?4 S cm?1 at 30 °C. Li solid‐state NMR results show an increase in Li+ ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2‐site occupancy originates from the strong interaction between the O2? of Li‐salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li+ transport. All‐solid‐state Li‐metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C.  相似文献   

3.
Enabling all‐solid‐state Li‐ion batteries requires solid electrolytes with high Li ionic conductivity and good electrochemical stability. Following recent experimental reports of Li3YCl6 and Li3YBr6 as promising new solid electrolytes, we used first principles computation to investigate the Li‐ion diffusion, electrochemical stability, and interface stability of chloride and bromide materials and elucidated the origin of their high ionic conductivities and good electrochemical stabilities. Chloride and bromide chemistries intrinsically exhibit low migration energy barriers, wide electrochemical windows, and are not constrained to previous design principles for sulfide and oxide Li‐ion conductors, allowing for much greater freedom in structure, chemistry, composition, and Li sublattice for developing fast Li‐ion conductors. Our study highlights chloride and bromide chemistries as a promising new research direction for solid electrolytes with high ionic conductivity and good stability.  相似文献   

4.
Solid‐state electrolytes have emerged as a promising alternative to existing liquid electrolytes for next generation Li‐ion batteries for better safety and stability. Of various types of solid electrolytes, composite polymer electrolytes exhibit acceptable Li‐ion conductivity due to the interaction between nanofillers and polymer. Nevertheless, the agglomeration of nanofillers at high concentration has been a major obstacle for improving Li‐ion conductivity. In this study, we designed a three‐dimensional (3D) nanostructured hydrogel‐derived Li0.35La0.55TiO3 (LLTO) framework, which was used as a 3D nanofiller for high‐performance composite polymer Li‐ion electrolyte. The systematic percolation study revealed that the pre‐percolating structure of LLTO framework improved Li‐ion conductivity to 8.8×10?5 S cm?1 at room temperature.  相似文献   

5.
《印度化学会志》2023,100(6):101009
It is crucial to obtain a reliable electrolyte system that is used for replacing thermally unstable and the moisture sensitive LiPF6 salt in liquid electrolytes for developing excellent cycle stability lithium ion batteries with high safety. In this work, a kind of hybrid electrolytes, adding Ga–Bi co-doped Li7La3Zr2O12 (LLZO) into LiTFSI based commercial electrolyte, was successfully prepared. The results shows that adding Ga–Bi co-doped LLZO ceramic particles is benefit for enhancing conductivity of LiTFSI based commercial electrolyte, which is 3.14 mS cm−1 from 3.02 mS cm−1. Furthermore, the LiFePO4| |Li cell assembling with LiTFSI based electrolyte with Ga–Bi co-doped LLZO ceramic particles shows good cycle performance and coulomb efficiency (100% except for the initial cycle value of 88%) due to a passivation multi-element film formed for preventing severe corrosion to the Al foil. The battery delivered a high first cycle discharge capacity of 144.2 mAh g−1 (85% of theoretical LiFePO4.) and a maximum value of 152.6 mAh g−1 after the 69th cycle. After the 300 stable cycle, the capacity of 130.8 mAh g−1 (85.7% of the maximum data) remained.  相似文献   

6.
To promote the development of solid‐state batteries, polymer‐, oxide‐, and sulfide‐based solid‐state electrolytes (SSEs) have been extensively investigated. However, the disadvantages of these SSEs, such as high‐temperature sintering of oxides, air instability of sulfides, and narrow electrochemical windows of polymers electrolytes, significantly hinder their practical application. Therefore, developing SSEs that have a high ionic conductivity (>10?3 S cm?1), good air stability, wide electrochemical window, excellent electrode interface stability, low‐cost mass production is required. Herein we report a halide Li+ superionic conductor, Li3InCl6, that can be synthesized in water. Most importantly, the as‐synthesized Li3InCl6 shows a high ionic conductivity of 2.04×10?3 S cm?1 at 25 °C. Furthermore, the ionic conductivity can be recovered after dissolution in water. Combined with a LiNi0.8Co0.1Mn0.1O2 cathode, the solid‐state Li battery shows good cycling stability.  相似文献   

7.
We prepared the polyethylene oxide (PEO)-based composite membrane electrolytes which contained the specialized ionic liquids and the inorganic filler of Li7La3Zr2O12 (LLZO). Mixtures of ionic liquids and tetragonal inorganic fillers were used as additives to prepare composite electrolytes for an application of all solid-state lithium ion batteries (ASLBs). In order to improve the ionic conductivity of composite membranes, we studied the structural change and the electrochemical behaviors as a function of the amounts of solvated ionic liquids (ILs). The addition effect of solvated ILs showed the higher ionic conductivity such as 10?4 S/cm at 55 °C by reducing the crystalline character of polymer based composite, resulting in the enhanced ion conducting property. The hybrid composite membranes were successfully made in flexible form, and have an excellent thermal and electrochemical stability. Finally, the electrochemical performance of the half-cell was evaluated, and it was confirmed that the ion-conducting characteristics were influenced and controlled by the effect of ILs.  相似文献   

8.
All-solid-state polymer lithium-ion batteries are ideal choice for the next generation of rechargeable lithium-ion batteries due to their high energy, safety and flexibility. Among all polymer electrolytes, PEO-based polymer electrolytes have attracted extensive attention because they can dissolve various lithium salts. However, the ionic conductivity of pure PEO-based polymer electrolytes is limited due to high crystallinity and poor segment motion. An inorganic filler SiO2 nanospheres and a plasticizer Succinonitrile (SN) are introduced into the PEO matrix to improve the crystallization of PEO, promote the formation of amorphous region, and thus improve the movement of PEO chain segment. Herein, a PEO18−LiTFSI−5 %SiO2−5 %SN composite solid polymer electrolyte (CSPE) was prepared by solution-casting. The high ionic conductivity of the electrolyte was demonstrated at 60 °C up to 3.3×10−4 S cm−1. Meanwhile, the electrochemical performance of LiFePO4/CSPE/Li all-solid-state battery was tested, with discharge capacity of 157.5 mAh g−1 at 0.5 C, and capacity retention rate of 99 % after 100 cycles at 60 °C. This system provides a feasible strategy for the development of efficient all-solid-state lithium-ion batteries.  相似文献   

9.
《中国化学快报》2020,31(9):2339-2342
Lithium (Li) metal, possessing an extremely high theoretical specific capacity (3860 mAh/g) and the most negative electrode potential (−3.040 V vs. standard hydrogen electrode), is one the most favorable anode materials for future high-energy-density batteries. However, the poor cyclability and safety issues induced by extremely unstable interfaces of traditional liquid Li metal batteries have limited their practical applications. Herein, a quasi-solid battery is constructed to offer superior interfacial stability as well as excellent interfacial contact by the incorporation of Li@composite solid electrolyte integrated electrode and a limited amount of liquid electrolyte (7.5 μL/cm2). By combining the inorganic garnet Al-doped Li6.75La3Zr1.75Ta0.25O12 (LLZO) with high mechanical strength and ionic conductivity and the organic ethylene-vinyl acetate copolymer (EVA) with good flexibility, the composite solid electrolyte film could provide sufficient ion channels, sustained interfacial contact and good mechanical stability at the anode side, which significantly alleviates the thermodynamic corrosion and safety problems induced by liquid electrolytes. This innovative and facile quasi-solid strategy is aimed to promote the intrinsic safety and stability of working Li metal anode, shedding light on the development of next-generation high-performance Li metal batteries.  相似文献   

10.
A novel single lithium‐ion (Li‐ion) conducting polymer electrolyte is presented that is composed of the lithium salt of a polyanion, poly[(4‐styrenesulfonyl)(trifluoromethyl(S‐trifluoromethylsulfonylimino)sulfonyl)imide] (PSsTFSI?), and high‐molecular‐weight poly(ethylene oxide) (PEO). The neat LiPSsTFSI ionomer displays a low glass‐transition temperature (44.3 °C; that is, strongly plasticizing effect). The complex of LiPSsTFSI/PEO exhibits a high Li‐ion transference number (tLi+=0.91) and is thermally stable up to 300 °C. Meanwhile, it exhibits a Li‐ion conductivity as high as 1.35×10?4 S cm?1 at 90 °C, which is comparable to that for the classic ambipolar LiTFSI/PEO SPEs at the same temperature. These outstanding properties of the LiPSsTFSI/PEO blended polymer electrolyte would make it promising as solid polymer electrolytes for Li batteries.  相似文献   

11.
The development of safe and long‐lasting all‐solid‐state batteries with high energy density requires a thorough characterization of ion dynamics in solid electrolytes. Commonly, conductivity spectroscopy is used to study ion transport; much less frequently, however, atomic‐scale methods such as nuclear magnetic resonance (NMR) are employed. Here, we studied long‐range as well as short‐range Li ion dynamics in the glass‐ceramic Li7P3S11. Li+ diffusivity was probed by using a combination of different NMR techniques; the results are compared with those obtained from electrical conductivity measurements. Our NMR relaxometry data clearly reveal a very high Li+ diffusivity, which is reflected in a so‐called diffusion‐induced 6Li NMR spin‐lattice relaxation peak showing up at temperatures as low as 313 K. At this temperature, the mean residence time between two successful Li jumps is in the order of 3×108 s?1, which corresponds to a Li+ ion conductivity in the order of 10?4 to 10?3 S cm?1. Such a value is in perfect agreement with expectations for the crystalline but metastable glass ceramic Li7P3S11. In contrast to conductivity measurements, NMR analysis reveals a range of activation energies with values ranging from 0.17 to 0.26 eV, characterizing Li diffusivity in the bulk. In our case, through‐going Li ion transport, when probed by using macroscopic conductivity spectroscopy, however, seems to be influenced by blocking grain boundaries including, for example, amorphous regions surrounding the Li7P3S11 crystallites. As a result of this, long‐range ion transport as seen by impedance spectroscopy is governed by an activation energy of approximately 0.38 eV. The findings emphasize how surface and grain boundary effects can drastically affect long‐range ionic conduction. If we are to succeed in solid‐state battery technology, such effects have to be brought under control by, for example, sophisticated densification or through the preparation of samples that are free of any amorphous regions that block fast ion transport.  相似文献   

12.
A fluorine‐doped antiperovskite Li‐ion conductor Li2(OH)X (X=Cl, Br) is shown to be a promising candidate for a solid electrolyte in an all‐solid‐state Li‐ion rechargeable battery. Substitution of F? for OH? transforms orthorhombic Li2OHCl to a room‐temperature cubic phase, which shows electrochemical stability to 9 V versus Li+/Li and two orders of magnitude higher Li‐ion conductivity than that of orthorhombic Li2OHCl. An all‐solid‐state Li/LiFePO4 with F‐doped Li2OHCl as the solid electrolyte showed good cyclability and a high coulombic efficiency over 40 charge/discharge cycles.  相似文献   

13.
This study reports on the preparation of a composite polymer electrolyte for secondary lithium-ion battery. Poly(vinylidiene fluoride-hexafluoropropylene) (P(VDF-HFP)) was used as the polymer host, and mesoporous SBA-15 (silica) ceramic fillers used as the solid plasticizer were added into the polymer matrix. The SBA-15 fillers with mesoporous structure and high specific surface can trap more liquid electrolytes to enhance the ionic conductivity. The ionic conductivity of P(VDF-HFP)/SBA-15 composite polymer electrolytes was in the order of 10−3 S cm−1 at room temperature. The characteristic properties of the composite polymer membranes were examined by using FTIR spectroscopies, scanning electron microscopy (SEM), and an AC impedance method. For comparison, the LiFePO4/Li composite batteries with a conventional microporous polyethylene (PE) separator and pure P(VDF-HFP) polymer membrane were also prepared and studied. As a result, the LiFePO4/Li composite battery comprised the P(VDF-HFP)/10 wt.% m-SBA-15 composite polymer electrolyte, which achieves an optimal discharge capacity of 88 mAh g−1 at 20 C rate with a high coulomb efficiency of 95%. It is demonstrated that the P(VDF-HFP)/m-SBA-15 composite membrane exhibits as a good candidate for application to LiFePO4 polymer batteries.  相似文献   

14.
The limited triple‐phase boundaries (TPBs) in solid‐state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of high‐performance all‐solid‐state lithium‐oxygen (ASS Li‐O2) batteries a challenge. Herein, an adjustable‐porosity plastic crystal electrolyte (PCE) has been fabricated by employing a thermally induced phase separation (TIPS) technique to overcome the above tricky issues. The SSC produced through the in‐situ introduction of the porous PCE on the surface of the active material, facilitates the simultaneous transfer of Li+/e?, as well as ensures fast flow of O2, forming continuous and abundant TPBs. The high Li+ conductivity, softness, and adhesion of the dense PCE significantly reduce the battery resistance to 115 Ω. As a result, the ASS Li‐O2 battery based on this adjustable‐porosity PCE exhibits superior performances with high specific capacity (5963 mAh g?1), good rate capability, and stable cycling life up to 130 cycles at 32 °C. This novel design and exciting results could open a new avenue for ASS Li‐O2 batteries.  相似文献   

15.
The search for ion‐conductive solid electrolytes for Li+ batteries is an important scientific and technological challenge with economic and sustainable energy implications. In this study, nanocrystals (NCs) of the ion conductor copper selenide (Cu2?ySe) were doped with Li by the process of cation exchange. Li2xCu2?2xSe alloy NCs were formed at intermediate stages of the reaction, which was followed by phase segregation into Li2Se and Cu2Se domains. Li‐doped Cu2?ySe NCs and Li2Se NCs exhibit a possible SI phase at moderately elevated temperatures and warrant further ion‐conductance tests. These findings may guide the design of nanostructured super‐ionic electrolytes for Li+ transport.  相似文献   

16.
将聚氧化乙烯(PEO)和二(三氟甲基磺酰)亚胺锂(LiTFSI)混合(固定EO/Li摩尔比为13)后, 采用溶液浇注法制备了一系列不同Li1.5Al0.5Ge1.5(PO4)3(LAGP)与PEO质量比的LAGP-PEO(LiTFSI)固体复合电解质体系. 结合电化学阻抗法、 表面形貌表征以及与惰性陶瓷填料(SiO2, Al2O3) 性能的对比分析, 探讨了LAGP在固体复合电解质中的作用机理以及锂离子的导电行为. 结果表明, 在以LAGP为主相的固体复合电解质中, PEO主要处于无定形态, 整个体系主要为PEO与LiTFSI的络合相、 LAGP与PEO(LiTFSI)相互作用形成的过渡相和LAGP晶相. 其中LAGP作为主要的导电基体不仅起到降低PEO结晶度、 改善两相导电界面的作用; 同时自身也可以作为离子传输的通道, 降低锂离子迁移的活化能, 从而使离子电导率得到提高. 当LAGP与PEO的质量比为6:4时, 固体复合电解质的成膜性能最好, 离子电导率最高, 在30 ℃时为2.57×10-5 S/cm, 接近LAGP的水平, 电化学稳定窗口超过5 V.  相似文献   

17.
In the present work, nanofibrous composite polymer electrolytes consist of polyethylene oxide (PEO), ethylene carbonate (EC), propylene carbonate (PC), lithium perchlorate (LiClO4), and titanium dioxide (TiO2) were designed using response surface method (RSM) and synthesized via an electrospinning process. Morphological properties of the as‐prepared electrolytes were studied using SEM. FTIR spectroscopy was conducted to investigate the interaction between the components of the composites. The highest room temperature ionic conductivity of 0.085 mS.cm?1 was obtained with incorporation of 0.175 wt. % TiO2 filler into the plasticized nanofibrous electrolyte by EC. Moreover, the optimum structure was compared with a film polymeric electrolyte prepared using a film casting method. Despite more amorphous structure of the film electrolyte, the nanofibrous electrolyte showed superior ion conductivity possibly due to the highly porous structure of the nanofibrous membranes. Furthermore, the mechanical properties illustrated slight deterioration with incorporation of the TiO2 nanoparticles into the electrospun electrolytes. This investigation indicated the great potential of the electrospun structures as all‐solid‐state polymeric electrolytes applicable in lithium ion batteries.  相似文献   

18.
AC impedance spectroscopy was used to investigate the ionic conductivity of solution cast poly(ethylene oxide) (PEO)/poly(methyl methacrylate) (PMMA) blends doped with lithium perchlorate. At low PEO contents (below overlap weight fraction w*), ionic conductivities are almost low. This could be due to nearly distant PEO chains in blend, which means ion transportation cannot be performed adequately. However, at weight fractions well above w*, a significant increase in ionic conductivity was observed. This enhanced ionic conductivity mimics the PEO segmental relaxation in rigid PMMA matrix, which can be attributed to the accelerated motions of confined PEO chains in PMMA matrix. At PEO content higher than 20 wt % the conductivity measured at room temperature drops due to crystallization of PEO. However by increasing temperature to temperatures well above the melting point of PEO, a sudden increase of conductivity was observed which was attributed to phase transition from crystalline to amorphous state. The results indicate that some PEO/PMMA blends with well enough PEO content, which are structurally solid, can be considered as an interesting candidate for usage as solid‐state electrolytes in Lithium batteries. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 2065–2071, 2010  相似文献   

19.
《中国化学快报》2022,33(8):4037-4042
At present, replacing the liquid electrolyte in a lithium metal battery with a solid electrolyte is considered to be one of the most powerful strategies to avoid potential safety hazards. Composite solid electrolytes (CPEs) have excellent ionic conductivity and flexibility owing to the combination of functional inorganic materials and polymer solid electrolytes (SPEs). Nevertheless, the ionic conductivity of CPEs is still lower than those of commercial liquid electrolytes, so the development of high-performance CPEs has important practical significance. Herein, a novel fast lithium-ion conductor material LiTa2PO8 was first filled into poly(ethylene oxide) (PEO)-based SPE, and the optimal ionic conductivity was achieved by filling different concentrations (the ionic conductivity is 4.61 × 10?4 S/cm with a filling content of 15 wt% at 60 °C). The enhancement in ionic conductivity is due to the improvement of PEO chain movement and the promotion of LiTFSI dissociation by LiTa2PO8. In addition, LiTa2PO8 also takes the key in enhancing the mechanical strength and thermal stability of CPEs. The assembled LiFePO4 solid-state lithium metal battery displays better rate performance (the specific capacities are as high as 157.3, 152, 142.6, 105 and 53.1 mAh/g under 0.1, 0.2, 0.5, 1 and 2 C at 60 °C, respectively) and higher cycle performance (the capacity retention rate is 86.5% after 200 cycles at 0.5 C and 60 °C). This research demonstrates the feasibility of LiTa2PO8 as a filler to improve the performance of CPEs, which may provide a fresh platform for developing more advanced solid-state electrolytes.  相似文献   

20.
Polymer electrolytes that have been developed for battery applications fall into two general classes, neat or “pure” polymer and plasticized or gel in which the polymer is combined with a conducting organic electrolyte. The polyethylene oxide (PEO) and its modifications are typical of the “pure” polymer electrolytes. They have poor conductivity at room temperatures, but at elevated temperatures, their conductivity is of the order of 10−3 to 10−4 S/cm. The PEO electrolytes have found application in the high temperature (>60°C) lithium metal anode battery systems. The high temperature necessary for good operation makes them unsuitable for use in small consumer appliances. The polymer electrolyte battery development activities have resulted in several high performance battery systems now just entering the market. Not all of the developments have resulted in commercial cell production. The commercialization activities of high performance lithium‐ion (Li‐Ion) batteries have been based on two general plastic polymer systems: poly‐vinylidene difluoride‐hexafluoropropylene copolymer (PVdF‐HFP) and polyacrylates. The polymer cells are expected to have advantages in manufacturing, flexibility, thin cell formats and lightweight packaging. Important parameters in PVdF gel electrolyte performance include the electrolyte type (combination of organic carbonates), temperature, and HFP copolymer content. Li‐Ion coin cells fabricated with a polyolefin separator with either liquid electrolyte or with the PVdF gel polymer electrolyte have equivalent performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号