首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 119 毫秒
1.
以铝片为基底, 经电化学腐蚀和沸水处理制备了多级微纳米结构; 通过气相沉积和涂油分别制备了超疏水表面、 疏水超润滑(slippery)表面和亲水slippery表面; 探究了表面不同的特殊浸润性(超亲水、 超疏水、 疏水slippery和亲水slippery)对液滴凝结的影响. 结果表明, 超亲水表面的液滴凝结属于膜状冷凝, 超疏水表面和slippery表面的液滴凝结均属于滴状冷凝. 超疏水表面液滴合并时, 合并的液滴会不定向弹离表面. 疏水slippery表面和亲水slippery表面由于表面浸润性的不同导致液滴成核密度和液滴合并的差异, 亲水slippery表面凝结液滴的最大体积远大于疏水slippery表面凝结液滴的最大体积. 4种表面的雾气收集效率由大到小依次为亲水slippery表面>疏水slippery表面>超亲水表面>超疏水表面.  相似文献   

2.
We report on the use of patterned superhydrophobic silicon nanowire surfaces for the efficient, selective transfer of biological molecules and nanoparticles. Superhydrophilic patterns are prepared on superhydrophobic silicon nanowire surfaces using standard optical lithography. The resulting water-repellent surface allows material transfer and physisorption to the superhydrophilic islands upon exposure to an aqueous solution containing peptides, proteins, or nanoparticles.  相似文献   

3.
Irradiation of metallic surfaces using ultra-short pulse laser results in a dual-scale structure. While metallic surfaces are superhydrophilic immediately after laser irradiation, prolonged exposure to air renders surfaces superhydrophobic due to surface reactions and deposition of carbonaceous materials onto the surface. In this work, we have fabricated a paraboloid microstructure, which is analyzed thermodynamically through the use of the Gibbs free energy to obtain the equilibrium contact angle and contact angle hysteresis. The effects of the geometrical details on maximizing the superhydrophobicity of the nanopatterned surface are also discussed in an attempt to design surfaces with desired and/or optimum wetting characteristics.  相似文献   

4.
In this work, we have studied superhydrophilic and superhydrophobic transitions on the vertically aligned multiwalled carbon nanotube (VACNT) surfaces. As-grown, the VACNT surfaces were superhydrophobic. Pure oxygen plasma etching modified the VACNT surfaces to generate superhydrophilic behavior. Irradiating the superhydrophilic VACNT surfaces with a CO2 laser (up to 50?kW?cm?2) restored the superhydrophobicity to a level that depended on the laser intensity. Contact angle and surface energy measurements by the sessile drop method were used to examine the VACNT surface wetting. X-ray photoelectron spectroscopy (XPS) showed heavy grafting of the oxygen groups onto the VACNT surfaces after oxygen plasma etching and their gradual removal, which also depended on the CO2 laser intensity. These results show the great influence of polar groups on the wetting behavior, with a strong correlation between the polar part of the surface energy and the oxygen content on the VACNT surfaces. In addition, the CO2 laser treatment created an interesting cage-like structure that may be responsible for the permanent superhydrophobic behavior observed on these samples.  相似文献   

5.
Superhydrophobic and superhydrophilic surfaces are of great interest because of a large range of applications, for example, as antifogging and self‐cleaning coatings, as antibiofouling paints for boats, in metal refining, and for water–oil separation. An aqueous ink based on three‐dimensional graphene monoliths (Gr) can be used for constructing both superhydrophobic and superhydrophilic surfaces on arbitrary substrates with different surficial structures from the meso‐ to the macroscale. The surface wettability of a Gr‐coated surface mainly depends on which additional layers (air for a superhydrophobic surface and water for a superhydrophilic surface) are adsorbed on the surface of the graphene sheets. Switching a Gr‐coated surface between being superhydrophobic and superhydrophilic can thus be easily achieved by drying and prewetting with ethanol. The Gr‐based superhydrophobic membranes or films should have great potential as efficient separators for fast and gravity‐driven oil–water separation.  相似文献   

6.
本文应用一步阳极氧化法在铝表面制作纳米粗糙结构的超亲水表面.考察控槽压、控电流及氧化时间对氧化铝表面超亲水性的影响.测试表明,控电流法更有利于制作超亲水表面,增大电流密度可缩短氧化时间,该法可制作稳定性好、机械强度高的超亲水氧化铝表面,富有潜在的应用价值.  相似文献   

7.
In this study, the authors researched the preparations of superhydrophilic/superhydrophobic surfaces on commercial cup stock polyethylene coated papers by using sparked aluminum nanoparticles deposited on substrates through a sparking process. In this stage, the surface was porous and showed superhydrophilic properties. The samples were then annealed in air at various temperatures and some transformed to superhydrophobicity. It is well known that a suitable roughness in combination with low surface energy has been required to obtain superhydrophobic surfaces. Therefore, it is believed that during annealing process, when polyethylene is diffused from the substrate through the nanoparticle films and the superhydrophobic characteristics were created. The scanning electron microscope images showed that the film surfaces had a fluffy structure for both the as‐deposited and the annealed samples. However, the atomic force microscopy phase images showed completely different surface properties. Moreover, the X‐ray photoelectron spectroscopy spectra showed different surface chemical compositions. The experimental results revealed that the working temperature to produce superhydrophobic surfaces depended on the sparked film thickness. Furthermore, in order to prove the assumption explained above, glass and poly (methyl methacrylate) were also used as substrates.  相似文献   

8.
This paper describes the fabrication of surfaces with different wettability, superhydrophobic/superhydrophilic, and pH-responsive properties. We used a self-assembled monolayer (SAM) of a dendron thiol as the underlying surface for electrodeposition of gold nanostructures. After this modification with a SAM of n-dodecanethiol or 11-mercaptoundecanol, the surface shows remarkable superhydrophobic properties with a contact angle of about 155 degrees and a tilt angle of less than 2 degrees or superhydrophilic properties with a contact angle of about 0 degrees , respectively. Moreover, a large-scale pH-responsive surface was obtained by modification with 2-(11-mercaptoundecanamido)benzoic acid (7) (MUABA). The pH-responsive behavior was amplified by using rough surfaces.  相似文献   

9.
Microtextured superhydrophobic surfaces: a thermodynamic analysis   总被引:1,自引:0,他引:1  
Superhydrophobic surfaces with a contact angle (CA) larger than 150 degrees have recently attracted great interest in both academic research and practical applications due to their water-repellent or self-cleaning properties. However, thermodynamic mechanisms responsible for the effects of various factors such as surface geometry and chemistry, liquids, and environmental sources have not been well understood. In this study, a pillar microtexture, which has been intensively investigated in experiments, is chosen as a typical example and thermodynamically analyzed in detail. To gain a comprehensive insight into superhydrophobic behavior, the roles of pillar height, width and spacing (or roughness and solid fraction), intrinsic CA, drop size, and vibrational energy are systematically investigated. Free energy (FE) and free energy barrier (FEB) are calculated using a simple and robust model. Based on the calculations of FE and FEB, various CAs, including apparent, equilibrium (stable), advancing and receding CAs, and contact angle hysteresis (CAH) can be determined. Especially, the design of practical superhydrophobic surfaces is emphasized in connection with the transition between noncomposite and composite states; a criterion for judging such transition is proposed. The theoretical results are consistent with the Wenzel's and the Cassie's equations for equilibrium CA values and experimental observations. Furthermore, based on these results and the proposed criterion, some general principles to achieve superhydrophobic performance are suggested.  相似文献   

10.
The wetting behavior of a surface under steam condensation depends on its intrinsic wettability and micrometer or nanoscale surface roughness. A typical superhydrophobic surface may not be suitable as a steamphobic surface because of the nucleation and growth of water inside the valleys and thus the failure to form an air-liquid-solid composite interface. Here, we present the results of steam condensation on chemically modified nanostructured carbon nanotube (CNT) mats. We used a plasma-enhanced chemical vapor deposition (PECVD) process to modify the intrinsic wettability of nanostructured CNT mats. The combination of low surface energy achieved by PECVD and the nanoroughness of the surface provides a mechanism to retain the superhydrophobicity of the CNT mats under steam condensation. The ability to withstand steam temperature and pressure for as long as 10 h implies the remarkably improved stability of the superhydrophobic state of the surface. The thermodynamic calculations carried out using a unit cell model clearly explain the steamphobic wetting behavior of the surface.  相似文献   

11.
Polyethylene terephthalate (PET) films have been structured with isolated nanofibrils and fibril bundles using oxidative plasma treatments with increasing etching ratios. The transition from fibrils to bundles was smooth and it was associated with a significant reduction in the overall top area fraction and with the development of a second organisation level at a larger length scale. This increased complexity was reflected in the surface properties. The surfaces with two-level substructures showed superhydrophilic and superhydrophobic properties depending on the surface chemistry. These properties were preserved during prolonged storage and resisted moderate mechanical stress. By combining different contact angle and drop impact measurements, the optimum surface design and plasma processing parameters for maximizing stability of the superhydrophobic or superhydrophilic properties of the PET films were identified.  相似文献   

12.
Protein adsorption is of major and widespread interest, being useful in the fundamental understanding of biological processes at interfaces through to the development of new materials. A number of techniques are commonly used to study protein adhesion, but few are directly quantitative. Here we describe the use of Nano Orange, a fluorometric assay, to quantitatively assess the adsorption of bovine fibrinogen and albumin onto model hydrophilic (OH terminated) and hydrophobic (CH3 terminated) surfaces. Results obtained using this method allowed the calibration of previously unquantifiable data obtained on the same surfaces using quartz crystal microbalance measurements and an amido black protein assay. Both proteins were found to adsorb with higher affinity but with lower saturation levels onto hydrophobic surfaces. All three analytical techniques showed similar trends in binding strength and relative amounts adsorbed over a range of protein concentrations, although the fluorometric analysis was the only method to give absolute quantities of surface-bound protein. The versatility of the fluorometric assay was also probed by analyzing protein adsorption onto porous superhydrophobic and superhydrophilic surfaces. Results obtained using the assay in conjunction with these surfaces were surface chemistry dependent. Imbibition of water into the superhydrophilic coatings provided greater surface area for protein adsorption, although the protein surface density was less than that found on a comparable flat hydrophilic surface. Superhydrophobic surfaces prevented protein solution penetration. This paper demonstrates the potential of a fluorometric assay to be used as an external calibration for other techniques following protein adsorption processes or as a supplemental method to study protein adsorption. Differences in protein adsorption onto hydrophilic vs superhydrophilic and hydrophobic vs superhydrophobic surfaces are highlighted.  相似文献   

13.
We describe a new method of fabricating large-area, highly scalable, "hybrid" superhydrophobic surfaces on silicon (Si) substrates with tunable, spatially selective adhesion behavior by controlling the morphologies of Si nanowire arrays. Gold (Au) nanoparticles were deposited on Si by glancing-angle deposition, followed by metal-assisted chemical etching of Si to form Si nanowire arrays. These surfaces were chemically modified and rendered hydrophobic by fluorosilane deposition. Au nanoparticles with different size distributions resulted in the synthesis of Si nanowires with very different morphologies (i.e., clumped and straight nanowire surfaces). The difference in nanowire morphology is attributed to capillary force-induced nanocohesion, which is due to the difference in nanowire porosity. The clumped nanowire surface demonstrated the lotus effect, and the straighter nanowires demonstrated the ability to pin water droplets while maintaining large contact angles (i.e., the petal effect). The high contact angles in both cases are explained by invoking the Cassie-Baxter wetting state. The high adhesion behavior of the straight nanowire surface may be explained by a combination of attractive van der Waals forces and capillary adhesion. We demonstrate the spatial patterning of both low- and high-adhesion superhydrophobicity on the same substrate by the simultaneous synthesis of clumped and straight silicon nanowires. The demonstration of hybrid superhydrophobic surfaces with spatially selective, tunable adhesion behavior on single substrates paves the way for future applications in microfluidic channels, substrates for biologically and chemically based analysis and detection where it is necessary to analyze a particular droplet in a defined location on a surface, and as a platform to study in situ chemical mixing and interfacial reactions of liquid pearls.  相似文献   

14.
We report a simple and environment friendly method to fabricate superhydrophobic metallic mesh surfaces for oil/water separation. The obtained mesh surface exhibits superhydrophobicity and superoleophilicity after it was dried in an oven at 200 °C for 10 min. A rough silver layer is formed on the mesh surface after immersion, and the spontaneous adsorption of airborne carbon contaminants on the silver surface lower the surface free energy of the mesh. No low‐surface‐energy reagents and/or volatile organic solvents are used. In addition, we demonstrate that by using the mesh box, oils can be separated and collected from the surface of water repeatedly, and that high separation efficiencies of larger than 92 % are retained for various oils. Moreover, the superhydrophobic mesh also possesses excellent corrosion resistance and thermal stability. Hence, these superhydrophobic meshes might be good candidates for the practical separation of oil from the surface of water.  相似文献   

15.
A new type of superhydrophobic material consisting of a surface with supported Ag@TiO(2) core-shell nanofibers has been prepared at low temperature by plasma-enhanced chemical vapor deposition (PECVD). The fibers are formed by an inner nanocrystalline silver thread which is covered by a TiO(2) overlayer. Water contact angles depend on the width of the fibers and on their surface concentration, reaching a maximum wetting angle close to 180 degrees for a surface concentration of approximately 15 fibers microm(-2) and a thickness of 200 nm. When irradiated with UV light, these surfaces become superhydrophilic (i.e., 0 degrees contact angle). The decrease rate of the contact angle depends on both the crystalline state of the titania and on the size of the individual TiO(2) domains covering the fibers. To the best of our knowledge, this is one of the few examples existing in the literature where a superhydrophobic surface transforms reversibly into a superhydrophilic one as an effect of light irradiation.  相似文献   

16.
In this work, superhydrophobic surfaces were derived from binary colloidal assemblies. CaCO(3)-loaded hydrogel spheres and silica or polystyrene ones were consecutively dip-coated on silicon wafers. The former assemblies were recruited as templates for the latter self-assembly. Due to the hydrophilicity difference between silicon wafers and CaCO(3)-loaded hydrogel spheres, the region selective localization of silica or polystyrene spheres leads to irregular binary structures with a hierarchical roughness. The subsequent modification with low surface energy molecules yields a superhydrophobic surface. The heating treatment may largely enhance the mechanical stability of the resulting binary structures, which allows regeneration of the surface superhydrophobicity, providing a good durability in practice.  相似文献   

17.
Artificial superhydrophobic surfaces are typically fabricated by tuning the surface roughness of intrinsically hydrophobic surfaces. We report here the design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrogen-terminated Si surfaces with an intrinsic water contact angle of approximately 74 degrees . The micro-textures consist of overhang structures with well-defined geometries fabricated by microfabrication technologies, which provide positions to support the liquid and prevent the liquid from entering into the indents between the micro-textures. As a result, water is in contact with a composite surface of solid and air, which induces the observed macroscopic superhydrophobic behavior.  相似文献   

18.
The paper reports on the preparation of superhydrophobic amorphous silicon oxide nanowires (a-SiONWs) on silicon substrates with a contact angle greater than 150 degrees by means of surface roughness and self-assembly. Nanowires with an average mean diameter in the range 20-150 nm and 15-20 microm in length were obtained by the so-called solid-liquid-solid (SLS) technique. The porous nature and the high roughness of the resulting surfaces were confirmed by AFM imaging. The superhydrophobicity resulted from the combined effects of surface roughness and chemical modification with fluorodecyl trichlorosilane.  相似文献   

19.
Sun XH  Wang SD  Wong NB  Ma DD  Lee ST  Teo BK 《Inorganic chemistry》2003,42(7):2398-2404
Attenuated total reflection Fourier transform infrared (FTIR) spectroscopy was used to characterize the surface species on oxide-free silicon nanowires (SiNWs) after etching with aqueous HF solution. The HF-etched SiNW surfaces were found to be hydrogen-terminated; in particular, three types of silicon hydride species, the monohydride (SiH), the dihydride (SiH(2)), and the trihydride (SiH(3)), had been observed. The thermal stability of the hydrogen-passivated surfaces of SiNWs was investigated by measuring the FTIR spectra after annealing at different elevated temperatures. It was found that hydrogen desorption of the trihydrides occurred at approximately 550 K, and that of the dihydrides occurred at approximately 650 K. At or above 750 K, all silicon hydride species began to desorb from the surfaces of the SiNWs. At around 850 K, the SiNW surfaces were free of silicon hydride species. The stabilities and reactivities of HF-etched SiNWs in air and water were also studied. The hydrogen-passivated surfaces of SiNWs showed good stability in air (under ambient conditions) but relatively poor stability in water. The stabilities and reactivities of the SiNWs are also compared with those of silicon wafers.  相似文献   

20.
Wall adsorption is a common problem in microfluidic devices, particularly when proteins are used. Here we show how superhydrophobic surfaces can be used to reduce protein adsorption and to promote desorption. Hydrophobic surfaces, both smooth and having high surface roughness of varying length scales (to generate superhydrophobicity), were incubated in protein solution. The samples were then exposed to flow shear in a device designed to simulate a microfluidic environment. Results show that a similar amount of protein adsorbed onto smooth and nanometer-scale rough surfaces, although a greater amount was found to adsorb onto superhydrophobic surfaces with micrometer scale roughness. Exposure to flow shear removed a considerably larger proportion of adsorbed protein from the superhydrophobic surfaces than from the smooth ones, with almost all of the protein being removed from some nanoscale surfaces. This type of surface may therefore be useful in environments, such as microfluidics, where protein sticking is a problem and fluid flow is present. Possible mechanisms that explain the behaviour are discussed, including decreased contact between protein and surface and greater shear stress due to interfacial slip between the superhydrophobic surface and the liquid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号