首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A synthesis of organosilicon monomeric and polymeric derivatives of 1,4-phenylenediamine, 4-aminoantipyrine, and aniline, which are analytical agents possessing sorption properties, was accomplished. The synthesized organosilicon polymers were studied as sorbents of heavy metals FeIII, HgII and noble metals AgI, AuIII, RhIII, PdII, PtIV. Poly[(3-N-silsesquioxanylpropyl-4aminoantipyrine)] exhibited high sorption activity with respect to platinum group metals in comparison with poly[N,N´-bis(3-silsesquioxanylpropyl)-1,4-phenylenediamine]. The reaction of poly[(3-N-silsesquioxanylpropyl-4-aminoantipyrine)] practically with all the elements under study was accompanied by coloring. The starting monomer exhibited similar metallochromic properties.  相似文献   

2.
The preparation of HTSC ceramics based on YIII and BiIII was studied. The polymers were obtained by two methods: by the reaction of preliminarily synthesized polyacrylic acid (PAA) or polyacrylamide (PAAm) with YIII, BaII, and CuII nitrates or by copolymerization of metal containing monomers (metal (YII, BaII, and CuII) acrylates or acrylamide complexes of metal (BiIII, CaII, SrII, PbII, and CuII) nitrates). The copolymerization was carried out in solution, in the solid phase, or using spontaneous polymerization, which has been previously discovered by the authors. The properties of the HTSC ceramics obtained are improved when the products of copolymerization of metal containing monomers are used.For part 41, seeIzv. Akad. Nauk, Ser. Khim., 1995, 885 [Russ. Chem. Bull., 1995,44, 858 (Engl. Transl.)].Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1096–1101, June, 1995.The authors wish to thank V. N. Topnikov and M. K. Makova for measuring the characteristics of HTSC ceramics and V. A. Zhorin for conducting copolymerization of metal containing monomers under high pressures combined with shear strains.The work was carried out with financial support of the International Science Foundation (Grant NJB 000).  相似文献   

3.
The luminescent and mesomorphic properties of a series of metal complexes based on hexacatenar 2,2′:6′,2′′‐terpyridines are investigated using experimental methods and density functional theory (DFT). Two types of ligand are examined, namely 5,5′′‐di(3,4,5‐trialkoxyphenyl)terpyridine with or without a fused cyclopentene ring on each pyridine and their complexes were prepared with the following transition metals: ZnII, CoIII, RhIII, IrIII, EuIII and DyIII. The exact geometry of some of these complexes was determined by single X‐ray diffraction. All complexes with long alkyl chains were found to be liquid crystalline, which property was induced on complexation. The liquid‐crystalline behaviour of the complexes was studied by polarising optical microscopy and small‐angle X‐ray diffraction. Some of the transition metal complexes (for example, those with ZnII and IrIII) are luminescent in solution, the solid state and the mesophase; their photophysical properties were studied both experimentally and using DFT methods (M06‐2X and B3LYP).  相似文献   

4.
The effect of the nature of organic electron transfer agents and of PtII, PdII, RhII, CoII, NiII, CuII, CrIII, MnII, TiIII, VIII, ZnII, and AgI metal ions on the kinetics of the homogeneous reduction ofgem-dichlorocyclopropanes has been studied. PtII, PdII, RhIII, CoII, and NiII ions accelerate this process, VIII and AgI ions exert practically no effect on the reduction rate, and the rest of the metal ions exhibit inhibitor properties.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1407–1410, August, 1993.  相似文献   

5.
This article reviews progress in the research of transition metal–lanthanide (d–f) bimetallic complexes. Through efficient energy transfer, sensitized luminescence of lanthanide ions from the visible range (EuIII) to the near-infrared region (NdIII, YbIII, ErIII and PrIII) is obtained in these bimetallic assembles. The d-block in d–f bimetallic complexes mainly contributes to the improvement of lanthanide emission efficiency and the extension of the excitation window for the lanthanide complexes. Examples are catalogued by various transition metals, such as RuII, OsII (FeII), PtII (AuI), PdII, ReI, CrIII, CoIII, ZnII and IrIII. The relevant synthetic procedures, crystal structures and photophysical properties of these d–f complexes are briefly described. Additionally, the molecular properties responsible for the performance of certain d–f systems, such as energy levels, nuclear distances and coordination environments, will be discussed.  相似文献   

6.
The synthesis and characterization of some transition metal cis-3,7-dimethyl-2,6-octadiensemicarbazone (CDOSC) complexes are reported. The ligand CDOSC yields: [ML2 Cl2] and [ML2 Cl2] Cl type complexes, where M = CrIII, MnII, FeIII, CoII, NiII, CuII, ZnII, CdII and HgII, L = CDOSC. Structures of the complexes were determined using elemental analysis, molar conductivity, magnetic measurements, i.r. and electronic, as well as n.m.r spectra. CDOSC acts as a bidentate ligand in all the complexes. All the newly synthesized metal complexes, as well as the ligand, were screened for their antibacterial activity. All the complexes exhibit strong inhibitory action against Gram (+) bacteria Staphylococcus aureus and Gram (−) bacteria Escherichia coli. The antibacterial activities of the complexes are stronger than those of the ligand CDOSC itself.  相似文献   

7.
A bisamidopyridine-type receptor, N,N′-bis(6-methyl-2-pyridyl)pyridine-2,6-dicarboxamide (1), and its CoIII complex were prepared and their X-ray structures were compared to those of N,N′-diphenylpyridine-2,6-dicarboxamide (2) and CoIII(2)2. Introduction of the two additional coordinative groups resulted in second-order interactions between the central ion and the nitrogen atoms of the terminal pyridine moieties in the crystalline state. Solution studies in acetonitrile revealed the importance of these interactions for the ligand's metal ion recognition ability. Whereas 2 only binds to PbII and CuII, 1 yields complexes with a majority of the heavy and transition metal ions studied, CoII, NiII, CuII, ZnII, FeIII, FeII, HgII, and PbII, respectively. The cation binding properties in solution were investigated by absorption spectroscopy and in the case of 1–MII/III, the formation of two spectroscopically distinguishable types of complexes was found. Protonation experiments and theoretical considerations helped to gain further insight into possible modes of coordination in solution.  相似文献   

8.
Summary Benzoylacetic acid (1 mol) interacts with ethylenediamine or with propanediamine (2 mol) to yield new N4 macrocycles 1,5,8,12-tetraazacyclotetradeca-2,4,9,11-tetraphenyl-3, 10-dicarboxylic-4,11-diacetic acid- 1,8-diene (L1) and 1,5,9,13-tetraazacyclohexadeca-2,4,10,12-tetraphenyl-3, 11-dicarboxylic-4,12-diacetic acid-1,9-diene (L2), respectively. These macrocycles have been successfully complexed with CrIII, FeIII, MnII, CoII, NiII, CuII and ZnII. The complexes of the divalent metal ions are non-electrolytes, while those of FeIII and CrIII are 1:1 electrolytes in DMSO. On the basis of ligand field spectra and magnetic moments an octahedral geometry has been proposed for all the complexes.  相似文献   

9.
Summary N-salicylidene anthranilamide (H2SAA) and its CrIII, MnII, FeIII, CoII, NiII and CuII complexes were prepared and characterized by physicochemical and spectroscopic data. H2SAA enolizes to give a dibasic ONO donor set in the divalent metal complexes. It also binds to the trivalent metal ions in a nonenolized form using a monobasic ONN donor set. CoII is oxidized to CoIII during complexation. Octahedral geometries are proposed for CrIII, MnII, FeIII and CoIII complexes, while square planar geometries are suggested for the NiII and CuII complexes. Phenoxide bridging in the CrIII and FeIII complexes and enoxide bridging in the NiII and CuII complexes is proposed.  相似文献   

10.
We report that the luminescence of upconverting luminescent nanoparticles (UCLNPs) is quenched by heavy metal ions and halide ions in aqueous solution. The UCLNPs consist of hexagonal NaYF4 nanocrystals doped with trivalent rare earth ions and were synthesized by both the oleic acid (solvothermal) method and the ethylenediaminetetraacetic acid (co‐precipitation) method. Quenching was studied for the CuII, HgII, PbII, CdII, CoII, AgI, FeIII, ZnII, bromide, and iodide ions and is found to be particularly strong for HgII. Stern–Volmer plots are virtually linear up to quencher concentrations of 10–25 mM , but deviate from linearity at higher quencher concentrations, because static quenching causes an additional effect. The UCLNPs display two main emission bands (blue, green, red or near‐infrared), and the quenching efficiencies for these are found to be different. The effect seems to be generally associated with UCLNPs because it was observed for all UCLNPs doped with trivalent lanthanide ions including YbIII, ErIII, HoIII, and TmIII. The results are discussed in terms of quenching mechanisms and with respect to potential applications such as optical sensing.  相似文献   

11.
Understanding binding site preferences in biological systems as well as affinities to binding partners is a crucial aspect in metallodrug development. We here present a mass spectrometry-based method to compare relative stabilities of metal-peptide adducts in the gas phase. Angiotensin 1 and substance P were used as model peptides. Incubation with isostructural N-heterocyclic carbene (NHC) complexes of RuII, OsII, RhIII, and IrIII led to the formation of various adducts, which were subsequently studied by energy-resolved fragmentation experiments. The gas-phase stability of the metal-peptide bonds depended on the metal and the binding partner. Of the four complexes used, the OsII derivative bound strongest to Met, while RuII formed the most stable coordination bond with His. RhIII was identified as the weakest peptide binder and IrIII formed peptide adducts with intermediate stability. Probing these intrinsic gas-phase properties can help in the interpretation of biological activities and the design of site-specific protein binding metal complexes.  相似文献   

12.
Acid and neutral CoII, CuII, NiII, ZnII, FeII, and FeIII maleates, fumarates, and itaconates were obtained and characterized. The methods for their synthesis were optimized, and the valence state and coordination of metals were studied. CoII and FeII hydrogen maleates, CoII maleate, and CoII fumarate were examined by X-ray diffraction analysis. The ligands based on unsaturated dicarboxylic acids can be mono-, bi-, and tetradentate, which results in the formation of acid salts, chain and three-dimensional coordination polymers, whose double bond is not involved in the coordination. The strong antiferromagnetic exchange (μelf=1.41 and 0.34 μB at 290 and 80 K, respectively) was detected in CuII itaconate. Based on the data of Mössbauer spectroscopy, the partial reduction of FeIII to FeII during the synthesis of FeIII maleate was shown to occur: δFe=0.43 and 1.27 mm s?1, ΔE Q=0.57 and 3.13 mm s?1 and Γ=0.37 and 0.28 mm s?1 atT=298 K for FeIII and FeII, respectively.  相似文献   

13.
Summary Complexes of the potentially tetradentate ligand isonitroso-acetylacetone dithiosemicarbazone (inbtH2) of formulae [Ti(inbtH2)Cl2]Cl2, [M(inbt)], where M = VIV O, MnII, NiII or ZnII, [M(inbtH2)X2], where M = CoII and X = Cl, or M = NiII and X = Cl, Br or I, and [M(inbtH2)Cl2]Cl, where M = CrIII or FeIII, have been prepared and characterized by physico-chemical and spectroscopic methods. In all the compounds the metal is coordinated by the thiocarbonyl sulphur and imine nitrogen, as revealed by i.r. studies. The n.m.r. spectra of the complexes of NiII and ZnII confirm coordination through nitrogen. Possible structures for the complexes are proposed. The Mössbauer spectrum of the FeIII complex is discussed.  相似文献   

14.
Seven types of complexes were obtained when penicillin G potassium (pin) was reacted with transition and non-transition metal ions in methanol/distilled water mixed solvent. Magnetic susceptibilities and ESR spectra (CuII complex) of powdered samples indicated that the monomeric form of the complexes in the solid state, and the paramagnetic nature of the CuII, NiII, MnII, CrIII, CoII, and FeIII complexes is attributable to the octahedral ligitional behavior of the potassium G penicillinate ligand. The antibacterial activity of the metal complexes were tested against some kind of bacteria and fungi strains and compared with penicillin G potassium activity. The possible mechanism of antibacterial action is discussed.  相似文献   

15.
We report herein a detailed study of the use of porphyrins fused to imidazolium salts as precursors of N‐heterocyclic carbene ligands 1 M . Rhodium(I) complexes 6 M – 9 M were prepared by using 1 M ligands with different metal cations in the inner core of the porphyrin (M=NiII, ZnII, MnIII, AlIII, 2H). The electronic properties of the corresponding N‐heterocyclic carbene ligands were investigated by monitoring the spectroscopic changes occurring in the cod and CO ancillary ligands of [( 1 M )Rh(cod)Cl] and [( 1 M )Rh(CO)2Cl] complexes (cod=1,5‐cyclooctadiene). Porphyrin–NHC ligands 1 M with a trivalent metal cation such as MnIII and AlIII are overall poorer electron donors than porphyrin–NHC ligands with no metal cation or incorporating a divalent metal cation such as NiII and ZnII. Imidazolium salts 3 M (M=Ni, Zn, Mn, 2H) have also been used as NHC precursors to catalyze the ring‐opening polymerization of L ‐lactide. The results clearly show that the inner metal of the porphyrin has an important effect on the reactivity of the outer carbene.  相似文献   

16.
A new macrocyclic ligand, 1,3,5-triaza-2,4:7,8:19,20-tribenzo-9,12,15,18-tetraoxacyclounkosa-1,5-diene (L) was synthesized by reaction of 2,6-diaminopyridine and 1,10-bis(2-formylphenyl)-1,4,7,10-tetraoxadecane. Then, its CuII, NiII, PbII, CoIII and LaIII complexes were synthesized by the template effect by reaction of 2,6-diaminopyridine and 1,10-bis(2-formylphenyl)-1,4,7,10-tetraoxadecane and Cu(NO3)2· 3H2O, Ni(NO3)2· 6H2O, Pb(NO3)2, Co(NO3)2· 6H2O, La(NO3)3·6H2O respectively. The ligand and its metal complexes have been characterized by elemental analysis, IR, 1H and 13C NMR, u.v–vis spectra, magnetic susceptibility, conductivity measurements and mass spectra. All complexes are diamagnetic and the CuII complex is binuclear. The CoIII complex was oxidized to CoIII.  相似文献   

17.
Summary The chelating behaviour of two biologically active ligands, pyridine-2-carboxaldehyde(4-phenyl) thiosemicarbazone(L1H) and pyridine-2-carboxaldehyde thiosemicarbazone(LH), towards FeIII, CoIII, FeII and RhIII has been investigated. The ligands act as tridentate N–N–S donors, resulting in the formation of bis-chelate complexes of the type MIII(A)2X·nH2O (A=L1 or L; X=Cl, ClO4; M=CoIII, RhIII, FeIII), FeII(L1H)2SO4·2H2O and FeII(L1)2·H2O. Biological activity of the ligands and the metal complexes in the form ofin vitro antibacterial activities towardsE. coli has been evaluated and the possible reasons for enhancement of the activity of ligands on coordination to metal ion is discussed.  相似文献   

18.
A new macrocyclic ligand, 1,3,5-triaza-2,4:7,8:15,16-tribenzo-9,15-dioxacycloheptadeca-1,5-diene (L) was synthesized by reaction of 2,6-diaminopyridine with 1,4-bis(2-carboxyaldehydephenoxy)butane. Then, its CuII, NiII, PbII, CoIII and LaIII complexes were synthesized by the template effect by reaction of 2,6-diaminopyridine and 1,4-bis (2-carboxyaldehydephenoxy)butane and Cu(NO3)2 · 3H2O, Ni(NO3)2 · 6H2O, Pb(NO3)2, Co(NO3)2 · 6H2O, La (NO3)3 · 6H2O, respectively. The ligand and its metal complexes were characterized by elemental analysis, IR, 1H- and 13C-n.m.r., UV-vis spectra, magnetic susceptibility, thermal gravimetric analysis, conductivity measurements and mass spectra. All complexes are diamagnetic and the CuII complex is binuclear. The CoII complex was oxidised to CoIII.  相似文献   

19.
Two tridentate Schiff bases having ONS and NNS donor sequences were prepared by condensing S-benzyldithiocarbazate (NH2NHCSSCH2Ph) (SBDTC) with pyridine-2-carboxaldehyde and salicylaldehyde, respectively. Complexes of these ligands with NiII, ZnII, CrIII, CoII, CuII, and SnII were studied and characterized by elemental analyses and various physico-chemical techniques. NiII, CuII, ZnII and SnII complexes were four-coordinate while the CrIII, SrIII and CoIII complexes were six-coordinate. The ONS Schiff base was moderately active against leukemia, while its zinc, antimony and cobalt complexes were strongly active against leukemic cells with DC50 = 0.35–5.00.  相似文献   

20.
Summary The structures of the volatile bimetalliciso-propoxides of later 3d metals with the general formula, [M{Al(OPr-i)4}n] where M=CrIII, MnII, FeIII, CoII, NiII and CuII have been investigated by visible reflectance and electron spin resonance spectroscopy as well as magnetic measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号