首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ca2MgSi2O7:Eu2+ and Ca2MgSi2O7:Eu2+, Dy3+ long afterglow phosphors were synthesized under a weak reducing atmosphere by the traditional high temperature solid state reaction method. The synthesized phosphors were characterized by powder X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) techniques. The luminescence properties were investigated using thermoluminescence (TL), photoluminescence (PL), long afterglow, mechanoluminescence (ML), and ML spectra techniques. The crystal structure of sintered phosphors was an akermanite type structure, which belongs to the tetragonal crystallography. TL properties of these phosphors were investigated, and the results were also compared. Under the ultraviolet excitation, the emission spectra of both prepared phosphors were composed of a broad band peaking at 535 nm, belonging to the broad emission band. When the Ca2MgSi2O7:Eu2+ phosphor is co-doped with Dy3+, the PL, afterglow and ML intensity is strongly enhanced. The decay graph indicates that both the sintered phosphors contain fast decay and slow decay process. The ML intensities of Ca2MgSi2O7:Eu2+ and Ca2MgSi2O7:Eu2+, Dy3+ phosphors were proportionally increased with the increase of impact velocity, which suggests that this phosphor can be used as sensors to detect the stress of an object.  相似文献   

2.
The details of the mechanism of persistent luminescence were probed by investigating the trap level structure of Sr2MgSi2O7:Eu2+,R3+ materials (R: Y, La-Lu, excluding Pm and Eu) with thermoluminescence (TL) measurements and Density Functional Theory (DFT) calculations. The TL results indicated that the shallowest traps for each Sr2MgSi2O7:Eu2+,R3+ material above room temperature were always ca. 0.7 eV corresponding to a strong TL maximum at ca. 90 °C. This main trap energy was only slightly modified by the different co-dopants, which, in contrast, had a significant effect on the depths of the deeper traps. The combined results of the trap level energies obtained from the experimental data and DFT calculations suggest that the main trap responsible for the persistent luminescence of the Sr2MgSi2O7:Eu2+,R3+ materials is created by charge compensation lattice defects, identified tentatively as oxygen vacancies, induced by the R3+ co-dopants.  相似文献   

3.
Fluorescence and spectral hole burning properties of Eu3+ ions were studied in nanocrystals-precipitated SnO2-SiO2 glasses. The glasses were prepared to contain various amount of Eu2O3 using the sol-gel method, in which SnO2 nanocrystals were precipitated by heating in air. In the glasses containing Eu2O3 less than 1%, the Eu3+ ions were preferentially doped in the SnO2 nanocrystals and their fluorescence intensities were enhanced by the energy transfer due to the recombination of electrons and holes excited in SnO2 crystals. The SnO2 nanocrystals-precipitated glasses exhibited the persistent spectral holes with the depth of ∼25% of the total fluorescence intensities of the Eu3+ ions. With the increasing Eu2O3 concentration, the amount of SnO2 nanocrystals decreased and the Sn4+ ions formed the random glass structure together with the silica network. This structure change induced the fluorescence intensities and the hole depth to decrease.  相似文献   

4.
The flower-like phosphors of Sr2MgSi2O7: Eu2+, Dy3+ with high brightness and long afterglow were obtained by sol–gel method. X-ray diffraction pattern (XRD) shows that single-phased Sr2MgSi2O7 phosphor is prepared by sol–gel method under 1250 °C. Scanning electron microscope (SEM) indicates that the phosphor consists of nano-sized whiskers which are detected for the first time in Eu2+ and Dy3+ co-doped long-lasting phosphorescence silicates. Furthermore, the investigation on the mechanism indicates that the internal structure and gas, liquid and solid phase effect play important roles in the formation of flower-like Sr2MgSi2O7: Eu2+, Dy3+ nanostructure. Finally, the optical properties of flower-like Sr2MgSi2O7 nanostructure have been characterized by photoluminescence (PL) spectra.  相似文献   

5.
CaAl2O4:Eu2+, Nd3+@TiO2 composite powders were synthesized by a sol–gel method under mild conditions (i.e. low temperature and ambient pressure). The as-prepared powders were characterized by transmission electron microscopy (TEM) and analyzed by X-ray diffraction (XRD). The photocatalytic behavior of the TiO2-base surfaces was evaluated by the degradation of nitrogen monoxide gas. It suggested that CaAl2O4:Eu2+, Nd3+@TiO2 composite powders were composed of anatase titania and that CaAl2O4:Eu2+, Nd3+. TiO2 particles were deposited on the surface of CaAl2O4:Eu2+, Nd3+ to form uniform film. CaAl2O4:Eu2+, Nd3+@TiO2 composite powders exhibited higher photocatalytic activity compared with pure TiO2 under visible light. And the result also clearly indicated that the long afterglow phosphor absorbed and stored lights for the TiO2 to remain photocatalytic activity in the dark.  相似文献   

6.
Eu, Dy co-doped strontium aluminate nanophosphors were prepared by the combustion synthesis method. Their structure and morphology were investigated by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy. According to the XRD and the TEM analysis, the average crystallite size was found to be in the nanometer range. The phase structure of the prepared nanophosphor is consistent with a standard monoclinic phase with a space group P21. The prepared SrAl2O4:Eu2+, Dy3+ nanophosphor emitted green light with a peak at 510 nm showing blue shift, which is due to the reduction in the particle size. Two distinct peaks were observed in the ML intensity versus time curve. The two peaks in ML indicate the presence of charge transfer in an ML process.  相似文献   

7.
Fine Eu3+-doped lutetium oxide (Lu2O3:Eu3+) nanophosphor were synthesized using a low-temperature solution-combustion method in a methyl-alcohol solution. The characteristics of the nanophosphors synthesized at various sintering temperatures with different Eu3+ concentrations were analyzed to determine the optimum synthesis conditions. Thermogravimetry/differential thermal analysis showed that Lu2O3:Eu3+ crystallizes completely when the dry powder is sintered at 500 °C. The Lu2O3:Eu3+ crystals had a cubic structure and monoclinic phase. The peak position of the luminescence spectrum did not differ with the concentration of Eu or the sintering temperature or atmosphere, whereas the luminescence intensity was strongly dependent on the concentration and sintering conditions.  相似文献   

8.
The persistent luminescence materials, barium aluminates doped with Eu2+ and Dy3+ (BaAl2O4:Eu2+,Dy3+), were prepared with the combustion synthesis at temperatures between 400 and 600 °C as well as with the solid state reaction at 1500 °C. The concentrations of Eu2+/Dy3+ (in mol% of the Ba amount) ranged from 0.1/0.1 to 1.0/3.0. The electronic and defect energy level structures were studied with thermoluminescence (TL) and synchrotron radiation (SR) spectroscopies: UV-VUV excitation and emission, as well as with X-ray absorption near-edge structure (XANES) methods. Theoretical calculations using the density functional theory (DFT) were carried out in order to compare with the experimental data.  相似文献   

9.
2CaO·3B2O3·H2O which has non-linear optical (NLO) property was synthesized under hydrothermal condition and identified by XRD, FTIR and TG as well as by chemical analysis. The molar enthalpy of solution of 2CaO·3B2O3·H2O in HCl·54.572H2O was determined. From a combination of this result with measured enthalpies of solution of H3BO3 in HCl·54.501H2O and of CaO in (HCl+H3BO3) solution, together with the standard molar enthalpies of formation of CaO(s), H3BO3(s), and H2O(l), the standard molar enthalpy of formation of −(5733.7±5.2) kJ mol−1 of 2CaO·3B2O3·H2O was obtained. Thermodynamic properties of this compound were also calculated by a group contribution method.  相似文献   

10.
A new molybdophosphate (NH4)8{Mo2VO4[(Mo2VIO6)CH3C(O)(PO3)2]2}·14H2O (1), has been synthesized by the reaction of {Mo2VO4(H2O)6}2+ fragments with 1-hydroxyethylidenediphosphonate (hedp HOC(CH3)(PO3H2)2), and it is characterized by 31P NMR, IR, UV, element analysis, TG and single-crystal X-ray analysis. The structure analysis reveals that the polyoxoanion can be described as two {(Mo2VIO6)(CH3C(O)(PO3)2} units connected by a {Mo2VO4}2+ moiety. In the structure, the six Mo atoms are arranged into a new “W-shaped” structure, which represents a new kind of molybdophosphate.  相似文献   

11.
Sunlight‐excitable orange or red persistent oxide phosphors with excellent performance are still in great need. Herein, an intense orange‐red Sr3?xBaxSiO5:Eu2+,Dy3+ persistent luminescence phosphor was successfully developed by a two‐step design strategy. The XRD patterns, photoluminescence excitation and emission spectra, and the thermoluminescence spectra were investigated in detail. By adding non‐equivalent trivalent rare earth co‐dopants to introduce foreign trapping centers, the persistent luminescence performance of Eu2+ in Sr3SiO5 was significantly modified. The yellow persistent emission intensity of Eu2+ was greatly enhanced by a factor of 4.5 in Sr3SiO5:Eu2+,Nd3+ compared with the previously reported Sr3SiO5:Eu2+, Dy3+. Furthermore, Sr ions were replaced with equivalent Ba to give Sr3?xBaxSiO5:Eu2+,Dy3+ phosphor, which shows yellow‐to‐orange‐red tunable persistent emissions from λ=570 to 591 nm as x is increased from 0 to 0.6. Additionally, the persistent emission intensity of Eu2+ is significantly improved by a factor of 2.7 in Sr3?xBaxSiO5:Eu2+,Dy3+ (x=0.2) compared with Sr3SiO5:Eu2+,Dy3+. A possible mechanism for enhanced and tunable persistent luminescence behavior of Eu2+ in Sr3?xBaxSiO5:Eu2+,RE3+ (RE=rare earth) is also proposed and discussed.  相似文献   

12.
High quality GdTaO4:Eu3+ luminescence films have been successfully prepared through a modified sol-gel process. The films were prepared using inorganic materials as raw materials, and the thermal decomposition and UV assisted technique were introduced to improve the quality of the film and reduce the period for forming the thick film. Results of structural studies by atomic force microscopy (AFM) and X-ray diffraction (XRD) showed that the surface was smooth and the structure was monoclinic with the average grain size of about 55 nm. The emission and excitation spectra of the film were investigated. Related to the transition 5 D07 F1 and 5 D07 F2 of Eu3+ ions, the main luminescence peaks were observed at 591 and 611 nm respectively, and the luminescence peak at 345 nm was detected simultaneously related to the TaO43− emission. Transmission spectrum and decay curve of the luminescence are also presented in this paper.  相似文献   

13.
The photoluminescence properties of xZnO–(100−x)SiO2 (x = 0, 5, 10, 20) containing 1% Eu2O3 prepared by a sol–gel method were systematically investigated. The results indicated that the relative proportion of f–f transitions to charge transfer (CT) absorption decreased with the increase of ZnO concentration. The intensity of 5D07FJ transitions of Eu3+ ions was enhanced with the increase of ZnO content due to local structure changes and decreased quantities of Eu3+ ions clusters. The results of fluorescence line narrow (FLN) spectra indicated that Eu3+ ions occupied one site in SiO2 glass and two sites in ZnO–SiO2 glasses. The second-order crystal field parameters were calculated. B20 and B22 for site 1 increased with excitation energy, while ones hardly changed for site 2.  相似文献   

14.
Er3+-doped Al2O3 nanopowders have been prepared by the non-aqueous sol-gel method using the aluminum isopropoxide as precursor, acetylacetone as a chelating agent, nitric acid as a catalyzer, and hydrated erbium nitrate as a dopant under isopropanol environment. The different phase structure, including three crystalline types of (Al, Er)2O3 phases, α, γ, θ, and an Er–Al–O stoichiometric compound phase, Al10Er6O24, was observed for the 0.01–0.5 mol% Er3+-doped Al2O3 nanopowders at the sintering temperature of 1,000 °C. The green and red up-conversion emissions centered at about 523, 545 and 660 nm, corresponding respectively to the 2H11/2, 4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+, were detected by a 978 nm semiconductor laser diodes excitation. With increasing Er3+ doping concentration from 0.01 to 0.1 mol%, the intensity of the green and red emissions increased with a decrease of the intensity ratio of the green to red emission. When the Er3+ doping concentration rose to 5 mol%, the intensity of the green and red emissions decreased with an increase of their intensity ratio. The maximum intensity of both the green and red emissions with the minimum of intensity ratio was obtained, respectively, for the 0.1 mol% Er3+-doped Al2O3 nanopowders composed of a single α-(Al,Er)2O3 phase. The intensity ratio of the green emission at 523 and 545 nm increased monotonously for all Er3+ doping concentrations. The two-photon absorption up-conversion process was involved in the green and red up-conversion emissions of the Er3+-doped Al2O3 nanopowders.  相似文献   

15.
Rhombohedral hexametavanadates K4Sr(VO3)6, K4Ba(VO3)6, Rb4 Ba(VO3)6, and Cs4Ba(VO3)6 melt incongruently in the temperature range of 491 to 600°C. Cooling of peritectic melts yields mixtures of compounds typical of M2+O-M2+O-V2O5 systems, far from equilibrium and depending on the cooling kinetics. The vanadate Cs4Ba(VO3)6 undergoes reversible polymorphic transformation at 360°C. All compounds show broad-band luminescence with a maximum of the luminescence spectrum at 490–590 nm with three types of excitation. The vanadates K4Sr(VO3)6 and Rb4Ba(VO3)6 show the highest luminescence intensity at room temperature. The latter is also most efficient at liquid nitrogen temperatures. The luminescence spectra depend on the excitation of vanadates. Three hypotheses were put forward to interpret this finding. The nature of luminescence is attributed to the relaxation of electronic excitation in [VO4]3− structural tetrahedra present in the vanadates. The performance characteristics of luminophores were determined. These luminophores may be promising as X-ray luminescent screens, radioluminescence indicators, and light-emitting diode devices.  相似文献   

16.
In this study, a simple approach was described for the fabrication of CaSO4/Fe0 composite used as a novel adsorbent for the reductive removal of Cu2+ from aqueous solutions. The magnetic CaSO4/Fe0 composite was prepared by a solid state reaction at 550 °C in the H2 atmosphere using CaSO4·2H2O/α-FeOOH as a precursor. The structure and morphology of the as-synthesized magnetic composite were characterized by X-ray diffraction, field emission scanning electron microscopy and a superconducting quantum interference device, respectively. Results showed that the CaSO4/Fe0 composite with a rod-like shape could be easily acquired from the CaSO4·2H2O/α-FeOOH precursor with the ratio of 1:0.5 at 550 °C in the H2 atmosphere for 1 h. The CaSO4/Fe0 composite exhibited enhanced performance relevant to the reductive removal of Cu2+. The removal amount of Cu2+ increased linearly with increasing of concentration of Cu2+ in wastewater. Possible removal mechanisms were proposed as follows: (1) the formation of Cu2O by fast reduction of Cu2+ with Fe0 nanoparticles on interface of CaSO4/Fe0 composite, (2) proper adsorption of Cu2+ on the surface of CaSO4/Fe0 composite, (3) the hydrous iron oxide (HIO) such as Fe (OH)3 and FeOOH in situ generated on the rest of CaSO4/Fe0 composite could further adsorb Cu2+ from wastewater.  相似文献   

17.
The photocatalytic activity of Bismuth‐codoped Sr4Al14O25: Eu2+, Dy3+ persistent phosphors is studied by monitoring the degradation of the blue methylene dye UV light irradiation. Powder phosphors are obtained by a combustion synthesis method and a postannealing process in reductive atmosphere. The XRD patterns show a single orthorhombic phase Sr4Al14O25: Eu2+, Dy3+, Bi3+ phosphors even at high Bismuth dopant concentrations of 12 mol%, suggesting that Bi ions are well incorporated into the host lattice. SEM micrographs show irregular micrograins with sizes in the range of 0.5–20 μm. The samples present an intense greenish‐blue fluorescence and persistent emissions at 495 nm, attributed to the 5d–4f allowed transitions of Eu2+. The fluorescence decreases as Bi concentration increases; that suggest bismuth‐induced traps formation that in turn quench the luminescence. The photocatalytic evaluation of the powders was studied under both 365 nm UV and solar irradiations. Sample with 12 mol% of Bi presented the best MB degradation activity; 310 min of solar irradiation allow 100% MB degradation, whereas only 62.49% MB degradation is achieved under UV irradiation. Our results suggest that codoping the persistent phosphors with Bi3+ can be an alternative to enhance their photocatalytic activity.  相似文献   

18.
Data obtained for the kinetics of oxidation of diethyl sulfide (Et2S) by hydrogen peroxide in aqueous solution catalyzed by boric acid indicate that monoperoxoborates B(O2H)(OH) 3 and diperoxoborates B(O2H)2(OH) 2 are the active species. The rates of the reactions of Et2S with B(O2H)(OH) 3 and B(O2H)2(OH) 2 are 2.5 and 100 times greater than with H2O2. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 43, No. 1, pp. 38–42, January–February, 2007.  相似文献   

19.
Eu3+ ion-doped LaPO4 nanowires or nanorods have been successfully synthesized by a simple hydrothermal method. The influence of varying the hydrothermal and subsequent sintering conditions on the morphology and structure of the LaPO4 host has been investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). For comparison, the Eu3+ ions were also doped into monoclinic monazite LaPO4 nanoparticles and perovskite LaAlO3 nanoparticles. The relative intensities of the emission lines of the LaPO4:Eu3+ nanosystems were essentially independent of their shape. The optimal doping concentrations in the monoclinic LaPO4 and perovskite LaAlO3 nanosystems were determined to be about 5.0 and 3.5 mol%, respectively. Under appropriate UV-radiation, the red light emitted from LaAlO3:Eu3+ (3.5 mol%) was brighter than that from LaPO4:Eu3+ (5.0 mol%) nanomaterial, resulting from differences in their spin-orbit couplings and covalence, which indicates that the nanoscale LaAlO3 is a promising host material for rare earth ions. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. Supported by the National Natural Science Foundation of China (Grant Nos. 20873039 & 90606001), Hunan Provincial Natural Science Foundation (No. 07jj4002), and the Students Innovation Training Fund of Hunan University  相似文献   

20.
Complexation behavior of NpO2 + with ortho-silicic acid (o-SA) has been studied using solvent extraction at ionic strengths varying from 0.10 to 1.00M (NaClO4) at pcH 3.68±0.08 and 25 °C with bis-(2-ethylhexyl) phosphoric acid (HDEHP) as the extractant. The stability constant value (log β1) for the 1:1 complex, NpO2(OSi(OH)3), was found to decrease with increase in ionic strength of the aqueous phase [6.83±0.01 at I=0.10M to 6.51±0.02 at I = 1.00M]. These values have been fitted in the SIT model expression and compared with similar values of complexation of the metal ions Am3+, Eu3+, UO2 2+, PuO2 2+, Np4+, Ni2+ and Co2+. The speciation of NpO2 +-o-silicate/carbonate system has been calculated as a function of pcH under ground water conditions. On leave from Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085, India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号