首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two experiments investigated pitch perception for stimuli where the place of excitation was held constant. Experiment 1 used pulse trains in which the interpulse interval alternated between 4 and 6 ms. In experiment 1a these "4-6" pulse trains were bandpass filtered between 3900 and 5300 Hz and presented acoustically against a noise background to normal listeners. The rate of an isochronous pulse train (in which all the interpulse intervals were equal) was adjusted so that its pitch matched that of the "4-6" stimulus. The pitch matches were distributed unimodally, had a mean of 5.7 ms, and never corresponded to either 4 or to 10 ms (the period of the stimulus). In experiment 1b the pulse trains were presented both acoustically to normal listeners and electrically to users of the LAURA cochlear implant, via a single channel of their device. A forced-choice procedure was used to measure psychometric functions, in which subjects judged whether the 4-6 stimulus was higher or lower in pitch than isochronous pulse trains having periods of 3, 4, 5, 6, or 7 ms. For both groups of listeners, the point of subjective equality corresponded to a period of 5.6 to 5.7 ms. Experiment 1c confirmed that these psychometric functions were monotonic over the range 4-12 ms. In experiment 2, normal listeners adjusted the rate of an isochronous filtered pulse train to match the pitch of mixtures of pulse trains having rates of F1 and F2 Hz, passed through the same bandpass filter (3900-5400 Hz). The ratio F2/F1 was 1.29 and F1 was either 70, 92, 109, or 124 Hz. Matches were always close to F2 Hz. It is concluded that the results of both experiments are inconsistent with models of pitch perception which rely on higher-order intervals. Together with those of other published data on purely temporal pitch perception, the data are consistent with a model in which only first-order interpulse intervals contribute to pitch, and in which, over the range 0-12 ms, longer intervals receive higher weights than short intervals.  相似文献   

2.
A melodic pitch experiment was performed to demonstrate the importance of time-interval resolution for pitch strength. The experiments show that notes with a low fundamental (75 Hz) and relatively few resolved harmonics support better performance than comparable notes with a higher fundamental (300 Hz) and more resolved harmonics. Two four note melodies were presented to listeners and one note in the second melody was changed by one or two semitones. Listeners were required to identify the note that changed. There were three orthogonal stimulus dimensions: F0 (75 and 300 Hz); lowest frequency component (3, 7, 11, or 15); and number of harmonics (4 or 8). Performance decreased as the frequency of the lowest component increased for both F0's, but performance was better for the lower F0. The spectral and temporal information in the stimuli were compared using a time-domain model of auditory perception. It is argued that the distribution of time intervals in the auditory nerve can explain the decrease in performance as F0, and spectral resolution increase. Excitation patterns based on the same time-interval information do not contain sufficient resolution to explain listener's performance on the melody task.  相似文献   

3.
A new method of measuring the resonance properties of a vocal fold using electromagnetic excitation and laser optoreflectometry for response monitoring is described. Two resonance peaks were experimentally identified with one magnet stuck on the vocal fold at frequencies F0(1m)=54.7 Hz and F0'(1m)=35.8 Hz. The addition of a second magnet allowed calculation of the actual viscoelastic properties of the vocal fold: F0=71.8 Hz; quality factor Q=8.03; mass m=0.057 g; stiffness k=11.6 Nm; and damping zeta=0.0032 Nm(-1). A numerical simulation of a two-layered model verified the experimental data.  相似文献   

4.
Fundamental frequency difference limens (F0DLs) were measured for a target harmonic complex tone with nominal fundamental frequency (F0) of 200 Hz, in the presence and absence of a harmonic masker with overlapping spectrum. The F0 of the masker was 0, ± 3, or ± 6 semitones relative to 200 Hz. The stimuli were bandpass filtered into three regions: 0-1000 Hz (low, L), 1600-2400 Hz (medium, M), and 2800-3600 Hz (high, H), and a background noise was used to mask combination tones and to limit the audibility of components falling on the filter skirts. The components of the target or masker started either in cosine or random phase. Generally, the effect of F0 difference between target and masker was small. For the target alone, F0DLs were larger for random than cosine phase for region H. For the target plus masker, F0DLs were larger when the target had random phase than cosine phase for regions M and H. F0DLs increased with increasing center frequency of the bandpass filter. Modeling using excitation patterns and "summary autocorrelation" and "stabilized auditory image" models suggested that use of temporal fine structure information can account for the small F0DLs obtained when harmonics are barely, if at all, resolved.  相似文献   

5.
A structure dynamic model of an airplane fin built by Saab-Scania, Sweden, has been vibration tested by the holographic time-average technique. The investigation was performed at Volvo-Flygmotor, Sweden, in their vibration laboratory. Holograms were made at every resonance frequency and, in all, eleven different patterns were created in the interval from 0 to 3 400 Hz. The inner structure of the fin model was revealed by inducing a temperature difference between the two exposures of a double-exposed hologram.  相似文献   

6.
Harmonic and melodic octave templates   总被引:1,自引:0,他引:1  
For normal-hearing adult listeners, two simultaneous pure tones with a frequency ratio close to 2/1 may perceptually fuse into a single sound, which shows that such listeners are sensitive to "octave harmony." Many adult listeners are also able to consistently adjust two successive pure tones "one octave apart," which shows that they possess melodic octave templates. According to Terhardt [J. Acoust. Soc. Am. 55, 1061-1069 (1974)], melodic octave templates and the perception of octave harmony originate from a common learning process taking place in early life. In the two experiments reported here, subjects performed repeated octave adjustments for pairs of simultaneous and successive tone bursts. Both tones were presented monaurally, at 45 or 65 dB SPL. The frequency of the lower tone (fref) was an independent variable, while the frequency of the higher tone was adjustable within a 500-cent range. In some conditions, when the two tones were presented simultaneously, they were sinusoidally frequency modulated in a coherent manner, at a rate of 2 or 4 Hz; the aim of this frequency modulation was to force the subjects to adopt a synthetic listening strategy, i.e., to base their adjustments on perceived harmony. For fref values ranging from 270-2000 Hz, subjects performed consistent adjustments when the tones were presented successively: fref had little effect on the adjustments' variability. However, in the same frequency range, the variability of the harmonic adjustments markedly increased with fref; for the highest fref values, it was much greater than the variability of the melodic adjustments. The results suggest that, in adult listeners, the perception of octave harmony disappears at frequencies for which melodic octaves are still accurately perceived.  相似文献   

7.
In an isolated syllable, a formant will tend to be segregated perceptually if its fundamental frequency (F0) differs from that of the other formants. This study explored whether similar results are found for sentences, and specifically whether differences in F0 (ΔF0) also influence across-formant grouping in circumstances where the exclusion or inclusion of the manipulated formant critically determines speech intelligibility. Three-formant (F1 + F2 + F3) analogues of almost continuously voiced natural sentences were synthesized using a monotonous glottal source (F0 = 150 Hz). Perceptual organization was probed by presenting stimuli dichotically (F1 + F2C + F3; F2), where F2C is a competitor for F2 that listeners must resist to optimize recognition. Competitors were created using time-reversed frequency and amplitude contours of F2, and F0 was manipulated (ΔF0 = ± 8, ± 2, or 0 semitones relative to the other formants). Adding F2C typically reduced intelligibility, and this reduction was greatest when ΔF0 = 0. There was an additional effect of absolute F0 for F2C, such that competitor efficacy was greater for higher F0s. However, competitor efficacy was not due to energetic masking of F3 by F2C. The results are consistent with the proposal that a grouping "primitive" based on common F0 influences the fusion and segregation of concurrent formants in sentence perception.  相似文献   

8.
Previous non-invasive brain research has reported auditory cortical sensitivity to periodicity as reflected by larger and more anterior responses to periodic than to aperiodic vowels. The current study investigated whether there is a lower fundamental frequency (F0) limit for this effect. Auditory evoked fields (AEFs) elicited by natural-sounding 400 ms periodic and aperiodic vowel stimuli were measured with magnetoencephalography. Vowel F0 ranged from normal male speech (113 Hz) to exceptionally low values (9 Hz). Both the auditory N1m and sustained fields were larger in amplitude for periodic than for aperiodic vowels. The AEF sources for periodic vowels were also anterior to those for the aperiodic vowels. Importantly, the AEF amplitudes and locations were unaffected by the F0 decrement of the periodic vowels. However, the N1m latency increased monotonically as F0 was decreased down to 19 Hz, below which this trend broke down. Also, a cascade of transient N1m-like responses was observed in the lowest F0 condition. Thus, the auditory system seems capable of extracting the periodicity even from very low F0 vowels. The behavior of the N1m latency and the emergence of a response cascade at very low F0 values may reflect the lower limit of pitch perception.  相似文献   

9.
The influence of the degree of envelope modulation and periodicity on the loudness and effectiveness of sounds as forward maskers was investigated. In the first experiment, listeners matched the loudness of complex tones and noise. The tones had a fundamental frequency (F0) of 62.5 or 250 Hz and were filtered into a frequency range from the 10th harmonic to 5000 Hz. The Gaussian noise was filtered in the same way. The components of the complex tones were added either in cosine phase (CPH), giving a large crest factor, or in random phase (RPH), giving a smaller crest factor. For each F0, subjects matched the loudness between all possible stimulus pairs. Six different levels of the fixed stimulus were used, ranging from about 30 dB SPL to about 80 dB SPL in 10-dB steps. Results showed that, at a given overall level, the CPH and the RPH tones were louder than the noise, and that the CPH tone was louder than the RPH tone. The difference in loudness was larger at medium than at low levels and was only slightly reduced by the addition of a noise intended to mask combination tones. The differences in loudness were slightly smaller for the higher than for the lower F0. In the second experiment, the stimuli with the lower F0s were used as forward maskers of a 20-ms sinusoid, presented at various frequencies within the spectral range of the maskers. Results showed that the CPH tone was the least effective forward masker, even though it was the loudest. The differences in effectiveness as forward maskers depended on masker level and signal frequency; in order to produce equal masking, the level of the CPH tone had to be up to 35 dB above that of the RPH tone and the noise. The implications of these results for models of loudness are discussed and a model is presented based on neural activity patterns in the auditory nerve; this predicts the general pattern of loudness matches. It is suggested that the effects observed in the experiments may have been influenced by two factors: cochlear compression and suppression.  相似文献   

10.
A comparison of the predictions of models of integration to data on the reception of consonants filtered into a variety of frequency bands is reported. New data on the consonant identification are presented. Three experiments were conducted testing the following bands: experiment I, 0-2100 Hz and 2100-4500 Hz; experiment II, 0-700 Hz combined with 700-1400, 1400-2100, 2100-2800, and 2800-4500 Hz; experiment III, all combinations of 700-1400, 1400-2100, 2100-2800, and 2800-4500 Hz. The predictions of four models, Fletcher's [Speech and Hearing in Communication (Van Nostrand, New York, 1950)] independent errors model, Massaro's fuzzy logical model of perception [Proc. Int. Congress of Phonetic Sciences, Stockholm, Vol. 3, pp. 106-113 (1987)], and Braida's pre-labelling and post-labelling models of integration [Q. J. Exp. Psychol. A 43, 647-677 (1991)], were compared in terms of their ability to predict combined-band scores. At least two models were capable of predicting performance for each combined-band condition. For experiment I, all models were able to make satisfactory predictions. For experiment II, a variant of the pre-labelling model was able to make satisfactory predictions. For experiment III, no model was able to make satisfactory predictions, but the fuzzy logical model of perception and a variant of the pre-labelling model made relatively good predictions. Thus the ability of the models to predict performance depended more on whether the condition included the lowest frequency band than on the adjacency or frequency separation.  相似文献   

11.
Two experiments examined the relationship between temporal pitch (and, more generally, rate) perception and auditory lateralization. Both used dichotic pulse trains that were filtered into the same high (3,900-5,400-Hz) frequency region in order to eliminate place-of-excitation cues. In experiment 1, a 1-s periodic pulse train of rate Fr was presented to one ear, and a pulse train of rate 2Fr was presented to the other. In the "synchronous" condition, every other pulse in the 2Fr train was simultaneous with a pulse in the opposite ear. In each trial, subjects concentrated on one of the two binaural images produced by this mixture: they matched its perceived location by adjusting the interaural level difference (ILD) of a bandpass noise, and its rate/pitch was then matched by adjusting the rate of a regular pulse train. The results showed that at low Fr (e.g., 2 Hz), subjects heard two pulse trains of rate Fr, one in the "higher rate" ear, and one in the middle of the head. At higher Fr (>25 Hz) subjects heard two pulse trains on opposite sides of the midline, with the image on the higher rate side having a higher pitch than that on the "lower rate" side. The results were compared to those in a control condition, in which the pulses in the two ears were asynchronous. This comparison revealed a duplex region at Fr > 25 Hz, where across-ear synchrony still affected the perceived locations of the pulse trains, but did not affect their pitches. Experiment 2 used a 1.4-s 200-Hz dichotic pulse train, whose first 0.7 s contained a constant interaural time difference (ITD), after which the sign of the ITD alternated between subsequent pulses. Subjects matched the location and then the pitch of the "new" sound that started halfway through the pulse train. The matched location became more lateralized with increasing ITD, but subjects always matched a pitch near 200 Hz, even though the rate of pulses sharing the new ITD was only 100 Hz. It is concluded from both experiments that temporal pitch perception is not driven by the output of binaural mechanisms.  相似文献   

12.
Normal-hearing listeners' ability to "hear out" the pitch of a target harmonic complex tone (HCT) was tested with simultaneous HCT or noise maskers, all bandpass-filtered into the same spectral region (1200-3600 Hz). Target-to-masker ratios (TMRs) necessary to discriminate fixed fundamental-frequency (F0) differences were measured for target F0s between 100 and 400 Hz. At high F0s (400 Hz), asynchronous gating of masker and signal, presenting the masker in a different F0 range, and reducing the F0 rove of the masker, all resulted in improved performance. At the low F0s (100 Hz), none of these manipulations improved performance significantly. The findings are generally consistent with the idea that the ability to segregate sounds based on cues such as F0 differences and onset/offset asynchronies can be strongly limited by peripheral harmonic resolvability. However, some cases were observed where perceptual segregation appeared possible, even when no peripherally resolved harmonics were present in the mixture of target and masker. A final experiment, comparing TMRs necessary for detection and F0 discrimination, showed that F0 discrimination of the target was possible with noise maskers at only a few decibels above detection threshold, whereas similar performance with HCT maskers was only possible 15-25 dB above detection threshold.  相似文献   

13.
The influencing factors of acoustic streaming in thermoacoustic waveguides with slowly varying cross-section are analyzed based on theoretical analysis and numerical simulation. The distribution curves of acoustic streaming velocity in waveguides with different characteristic scales are presented in several specific cases.The results show that appropriate forms of varying cross-section can strengthen or weaken acoustic streaming for specific acoustic fields and the thermophysical parameters have no effect on this part.In addition,the influence of time-average temperature distribution on acoustic streaming is substantial in tubes with a width of the order of the thermal penetration depth.Without time-average temperature distribution,the effect of heat conduction on acoustic streaming is great in tubes whose width is an order of about 10 to 20 times the viscous penetration depth.  相似文献   

14.
The effect of the filter bank on fundamental frequency (F0) discrimination was examined in four Nucleus CI24 cochlear implant subjects for synthetic stylized vowel-like stimuli. The four tested filter banks differed in cutoff frequencies, amount of overlap between filters, and shape of the filters. To assess the effects of temporal pitch cues on F0 discrimination, temporal fluctuations were removed above 10 Hz in one condition and above 200 Hz in another. Results indicate that F0 discrimination based upon place pitch cues is possible, but just-noticeable differences exceed 1 octave or more depending on the filter bank used. Increasing the frequency resolution in the F0 range improves the F0 discrimination based upon place pitch cues. The results of F0 discrimination based upon place pitch agree with a model that compares the centroids of the electrical excitation pattern. The addition of temporal fluctuations up to 200 Hz significantly improves F0 discrimination. Just-noticeable differences using both place and temporal pitch cues range from 6% to 60%. Filter banks that do not resolve the higher harmonics provided the best temporal pitch cues, because temporal pitch cues are clearest when the fluctuation on all channels is at F0 and preferably in phase.  相似文献   

15.
范瑜晛  刘克  杨军 《声学学报》2012,37(2):113-122
通过理论分析和数值仿真,对渐变截面热声波导管内声流各影响因素进行了具体的分析,并给出了不同情形下波导管内的声流速度分布特性曲线。研究表明,热物理参数对渐变截面导致的声流变化无影响,针对具体的声场设计合适的截面变化形式可以使得管内声流在整体上得到一定程度的抑制或加强。此外,当波导管截面尺度与热穿透深度同数量级时,轴向时均温度分布对声流的影响十分显著。当不存在非零时均温度梯度时,热传导效应对声流的影响在管截面尺度为黏性穿透深度约10至20倍量级时最大。   相似文献   

16.
This paper focuses on the applicability of the temporal (TPS) and spatial carrier (SCPS) phase-shifting techniques to the time-average interferogram intensity modulation distribution determination. Both techniques use the same mathematical formulae, but in different domains: temporal and spatial ones. They are sensitive to different types of errors. The influence of main experimental errors: phase-step miscalibration, spatial carrier miscalibration, average intensity changes and intensity noise in both the presented techniques on the fringe function determination (|J0| or J02 in case of sinusoidal vibrations), is discussed. The techniques are compared to find the most appropriate one. The time-average technique with heterodyning for small vibration–amplitude measurements is also discussed. The application of the SCPS method to this technique is shown for the first time.  相似文献   

17.
The effects of variations in vocal effort corresponding to common conversation situations on spectral properties of vowels were investigated. A database in which three degrees of vocal effort were suggested to the speakers by varying the distance to their interlocutor in three steps (close--0.4 m, normal--1.5 m, and far--6 m) was recorded. The speech materials consisted of isolated French vowels, uttered by ten naive speakers in a quiet furnished room. Manual measurements of fundamental frequency F0, frequencies, and amplitudes of the first three formants (F1, F2, F3, A1, A2, and A3), and on total amplitude were carried out. The speech materials were perceptually validated in three respects: identity of the vowel, gender of the speaker, and vocal effort. Results indicated that the speech materials were appropriate for the study. Acoustic analysis showed that F0 and F1 were highly correlated with vocal effort and varied at rates close to 5 Hz/dB for F0 and 3.5 Hz/dB for F1. Statistically F2 and F3 did not vary significantly with vocal effort. Formant amplitudes A1, A2, and A3 increased significantly; The amplitudes in the high-frequency range increased more than those in the lower part of the spectrum, revealing a change in spectral tilt. On the average, when the overall amplitude is increased by 10 dB, A1, A2, and A3 are increased by 11, 12.4, and 13 dB, respectively. Using "auditory" dimensions, such as the F1-F0 difference, and a "spectral center of gravity" between adjacent formants for representing vowel features did not reveal a better constancy of these parameters with respect to the variations of vocal effort and speaker. Thus a global view is evoked, in which all of the aspects of the signal should be processed simultaneously.  相似文献   

18.
三角翼涡破裂的高精度数值模拟   总被引:1,自引:0,他引:1  
采用5阶精度的加权紧致非线性格式(WCNS-E-5)数值模拟65°后掠角尖前缘三角翼的大攻角跨声速绕流流场,考察低耗散、高分辨率的WCNS-E-5格式对于三角翼涡破裂模拟的适用性,及激波旋涡干扰对涡破裂点位置的影响,重点研究三角翼大攻角旋涡破裂点的突然前移.通过求解任意坐标系下的非定常雷诺平均N-S方程,采用WCNS-E-5和SST两方程湍流模型,与试验结果和文献计算结果对比,表明既有高阶精度又能光滑捕捉激波的WCNS格式在模拟三角翼旋涡破裂方面具有一定优势,其数值结果与试验结果吻合较好,三角翼大攻角旋涡破裂点的突然前移是由于跨声速流场的激波旋涡干扰.  相似文献   

19.
The purpose of this investigation was to study voice changes during a working day. The subjects consisted of 33 female primary and secondary schoolteachers who recorded their first and last lessons during one school day. The subjects were studied both as one group and two subgroups (those with many and those with few voice complaints). Estimates of fundamental frequency (F0), sound pressure level (SPL), the standard deviations of these values (F0 SD; SPL SD) and F0 time (vibration time of vocal folds) were made. The most obvious change due to loading was the rise of F0 that was 9.7 Hz between the first and last lesson (P = 0.00). F0 increased more (12.8. Hz, P = 0.006) in the subgroup with few complaints.  相似文献   

20.
Difference limens for complex tones (DLCs) that differ in F0 are widely regarded as a measure of periodicity-pitch discrimination. However, because F0 changes are inevitably accompanied by changes in the frequencies of the harmonics, DLCs may actually reflect the discriminability of individual components. To test this hypothesis, DLCs were measured for complex tones, the component frequencies of which were shifted coherently upward or downward by ΔF = 0%, 25%, 37.5%, or 50% of the F0, yielding fully harmonic (ΔF = 0%), strongly inharmonic (ΔF = 25%, 37.5%), or odd-harmonic (ΔF = 50%) tones. If DLCs truly reflect periodicity-pitch discriminability, they should be larger (worse) for inharmonic tones than for harmonic and odd harmonic tones because inharmonic tones have a weaker pitch. Consistent with this prediction, the results of two experiments showed a non-monotonic dependence of DLCs on ΔF, with larger DLCs for ΔF's of ± 25% or ± 37.5% than for ΔF's of 0 or ± 50% of F0. These findings are consistent with models of pitch perception that involve harmonic templates or with an autocorrelation-based model provided that more than just the highest peak in the summary autocorrelogram is taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号