首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 720 毫秒
1.
The frequency or dispersion relation for the discontinuous Galerkin mixed formulation of the 1‐D linearized shallow‐water equations is analysed, using several basic DG mixed schemes. The dispersion properties are compared analytically and graphically with those of the mixed continuous Galerkin formulation for piecewise‐linear bases on co‐located grids. Unlike the Galerkin case, the DG scheme does not exhibit spurious stationary pressure modes. However, spurious propagating modes have been identified in all the present discontinuous Galerkin formulations. Numerical solutions of a test problem to simulate fast gravity modes illustrate the theoretical results and confirm the presence of spurious propagating modes in the DG schemes. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
3.
We present a parameter‐free stable maximum‐entropy method for incompressible Stokes flow. Derived from a least‐biased optimization inspired by information theory, the meshfree maximum‐entropy method appears as an interesting alternative to classical approximation schemes like the finite element method. Especially compared with other meshfree methods, e.g. the moving least‐squares method, it allows for a straightforward imposition of boundary conditions. However, no Eulerian approach has yet been presented for real incompressible flow, encountering the convective and pressure instabilities. In this paper, we exclusively address the pressure instabilities caused by the mixed velocity‐pressure formulation of incompressible Stokes flow. In a preparatory discussion, existing stable and stabilized methods are investigated and evaluated. This is used to develop different approaches towards a stable maximum‐entropy formulation. We show results for two analytical tests, including a presentation of the convergence behavior. As a typical benchmark problem, results are also shown for the leaky lid‐driven cavity. The already presented information‐flux method for convection‐dominated problems in mind, we see this as the last step towards a maximum‐entropy method capable of simulating full incompressible flow problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
We reformulate the depth‐averaged non‐hydrostatic extension for shallow water equations to show equivalence with well‐known Boussinesq‐type equations. For this purpose, we introduce two scalars representing the vertical profile of the non‐hydrostatic pressure. A specific quadratic vertical profile yields equivalence to the Serre equations, for which only one scalar in the traditional equation system needs to be modified. Equivalence can also be demonstrated with other Boussinesq‐type equations from the literature when considering variable depth, but then the non‐hydrostatic extension involves mixed space–time derivatives. In case of constant bathymetries, the non‐hydrostatic extension is another way to circumvent mixed space–time derivatives arising in Boussinesq‐type equations. On the other hand, we show that there is no equivalence when using the traditionally assumed linear vertical pressure profile. Linear dispersion and asymptotic analysis as well as numerical test cases show the advantages of the quadratic compared with the linear vertical non‐hydrostatic pressure profile in the depth‐averaged non‐hydrostatic extension for shallow water equations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
The combination of a high‐order unstructured spectral difference (SD) spatial discretization scheme with sub‐grid scale (SGS) modeling for large‐eddy simulation is investigated with particular focus on the consistent implementation of a structural mixed model based on the scale similarity hypothesis. The difficult task of deriving a consistent formulation for the discrete filter within the SD element of arbitrary order led to the development of a new class of three‐dimensional constrained discrete filters. The discrete filters satisfy a set of selected criteria and are completely local within the SD element. Their weights can be automatically computed at run time from the number of solution points within each element and the expected filter cutoff length scale. The novel discrete filters can be applied to any SGS model involving explicit filtering and to a broad class of high‐order discontinuous finite element numerical schemes. The code is applied to the computation of turbulent channel flows at three Reynolds numbers, namely Reτ = 180, 395, and 590 (based on the friction velocity uτ and channel half‐width δ). Results from computations with and without the SGS model are compared against results from direct numerical simulation. The numerical experiments suggest that the results are sensitive to the use of the SGS model, even when a high‐order numerical scheme is used, especially when the grid resolution is kept relatively low and mostly in terms of resolved Reynolds stresses. Results obtained using existing filters based on the projection of the solution over lower‐order polynomial bases are also shown and demonstrate that these filters are inadequate for SGS modeling purposes, mostly because of their inability to enforce the selected cutoff length scale with sufficient accuracy. The use of the similarity mixed formulation proved to be particularly accurate in reproducing SGS interactions, confirming that its well‐known potential can be realized in conjunction with state‐of‐the‐art high‐order numerical schemes.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
We present a novel method to model large deformation fluid‐structure‐fracture interaction, which is characterized by the fact that the fluid‐induced loads lead to fracture of the structure and the fluid medium fills the resulting crack opening; the mutual interaction between the crack faces and the surrounding fluid contributes substantially to the overall dynamics. A mesh refitting approach is used to model the quasi‐static fracture of the structure, and a robust embedded interface formulation is used to solve the fluid flow equations. The proposed method uses a strongly coupled partitioned scheme with Aitken's Δ2 method as convergence accelerator. Selected numerical examples of increasing complexity are presented to evaluate the performance of the proposed fluid‐structure‐fracture coupling algorithm. The most difficult simulation of the reported examples involves a number of complex phenomena: mixed‐mode crack propagation through the structure, fluid starts to fill the crack opening, complete fracture of the structure into two pieces of which one is carried away by the flow.  相似文献   

7.
The fully non‐linear free‐surface flow over a semi‐circular bottom obstruction was studied numerically in two dimensions using a mixed Eulerian–Lagrangian formulation. The problem was solved in the time domain that allows the prediction of a number of transient phenomena, such as the generation of upstream advancing solitary waves, as well as the simulation of wave breaking. A parametric study was performed for a range of values of the depth‐based Froude number up to 2.5 and non‐dimensional obstacle heights, α up to 0.9. When wave breaking does not occur, three distinct flow regimes were identified: subcritical, transcritical and supercritical. When breaking occurs it may be of any type: spilling, plunging or surging. In addition, for values of the Froude number close to 1, the upstream solitary waves break. A systematic study was undertaken to define the boundaries of each type of breaking and non‐breaking pattern and to determine the drag and lift coefficients, free‐surface profile characteristics and transient behavior. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we develop a finite element model for solving the convection–diffusion‐reaction equation in two dimensions with an aim to enhance the scheme stability without compromising consistency. Reducing errors of false diffusion type is achieved by adding an artificial term to get rid of three leading mixed derivative terms in the Petrov–Galerkin formulation. The finite element model of the Petrov–Galerkin type, while maintaining convective stability, is modified to suppress oscillations about the sharp layer by employing the M‐matrix theory. To validate this monotonic model, we consider test problems which are amenable to analytic solutions. Good agreement is obtained with both one‐ and two‐dimensional problems, thus validating the method. Other problems suitable for benchmarking the proposed model are also investigated. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
A σ‐coordinate non‐hydrostatic model, combined with the embedded Boussinesq‐type‐like equations, a reference velocity, and an adapted top‐layer control, is developed to study the evolution of deep‐water waves. The advantage of using the Boussinesq‐type‐like equations with the reference velocity is to provide an analytical‐based non‐hydrostatic pressure distribution at the top‐layer and to optimize wave dispersion property. The σ‐based non‐hydrostatic model naturally tackles the so‐called overshooting issue in the case of non‐linear steep waves. Efficiency and accuracy of this non‐hydrostatic model in terms of wave dispersion and nonlinearity are critically examined. Overall results show that the newly developed model using a few layers is capable of resolving the evolution of non‐linear deep‐water wave groups. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a stabilized extended finite element method (XFEM) based fluid formulation to embed arbitrary fluid patches into a fixed background fluid mesh. The new approach is highly beneficial when it comes to computational grid generation for complex domains, as it allows locally increased resolutions independent from size and structure of the background mesh. Motivating applications for such a domain decomposition technique are complex fluid‐structure interaction problems, where an additional boundary layer mesh is used to accurately capture the flow around the structure. The objective of this work is to provide an accurate and robust XFEM‐based coupling for low‐ as well as high‐Reynolds‐number flows. Our formulation is built from the following essential ingredients: Coupling conditions on the embedded interface are imposed weakly using Nitsche's method supported by extra terms to guarantee mass conservation and to control the convective mass transport across the interface for transient viscous‐dominated and convection‐dominated flows. Residual‐based fluid stabilizations in the interior of the fluid subdomains and accompanying face‐oriented fluid and ghost‐penalty stabilizations in the interface zone stabilize the formulation in the entire fluid domain. A detailed numerical study of our stabilized embedded fluid formulation, including an investigation of variants of Nitsche's method for viscous flows, shows optimal error convergence for viscous‐dominated and convection‐dominated flow problems independent of the interface position. Challenging two‐dimensional and three‐dimensional numerical examples highlight the robustness of our approach in all flow regimes: benchmark computations for laminar flow around a cylinder, a turbulent driven cavity flow at Re = 10000 and the flow interacting with a three‐dimensional flexible wall. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
12.
This paper presents the derivation of a depth‐integrated wave propagation and runup model from a system of governing equations for two‐layer non‐hydrostatic flows. The governing equations are transformed into an equivalent, depth‐integrated system, which separately describes the flux‐dominated and dispersion‐dominated processes. The depth‐integrated system reproduces the linear dispersion relation within a 5 error for water depth parameter up to kd = 11, while allowing direct implementation of a momentum conservation scheme to model wave breaking and a moving‐waterline technique for runup calculation. A staggered finite‐difference scheme discretizes the governing equations in the horizontal dimension and the Keller box scheme reconstructs the non‐hydrostatic terms in the vertical direction. An semi‐implicit scheme integrates the depth‐integrated flow in time with the non‐hydrostatic pressure determined from a Poisson‐type equation. The model is verified with solitary wave propagation in a channel of uniform depth and validated with previous laboratory experiments for wave transformation over a submerged bar, a plane beach, and fringing reefs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A two‐dimensional depth‐integrated numerical model is developed using a fourth‐order Boussinesq approximation for an arbitrary time‐variable bottom boundary and is applied for submarine‐landslide‐generated waves. The mathematical formulation of model is an extension of (4,4) Padé approximant for moving bottom boundary. The mathematical formulations are derived based on a higher‐order perturbation analysis using the expanded form of velocity components. A sixth‐order multi‐step finite difference method is applied for spatial discretization and a sixth‐order Runge–Kutta method is applied for temporal discretization of the higher‐order depth‐integrated governing equations and boundary conditions. The present model is validated using available three‐dimensional experimental data and a good agreement is obtained. Moreover, the present higher‐order model is compared with fully potential three‐dimensional models as well as Boussinesq‐type multi‐layer models in several cases and the differences are discussed. The high accuracy of the present numerical model in considering the nonlinearity effects and frequency dispersion of waves is proven particularly for waves generated in intermediate and deeper water area. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, proper orthogonal decomposition (POD) is combined with the Petrov–Galerkin least squares mixed finite element (PLSMFE) method to derive an optimizing reduced PLSMFE formulation for the non‐stationary conduction–convection problems. Error estimates between the optimizing reduced PLSMFE solutions based on POD and classical PLSMFE solutions are presented. The optimizing reduced PLSMFE formulation can circumvent the constraint of Babu?ka–Brezzi condition so that the combination of finite element subspaces can be chosen freely and allow optimal‐order error estimates to be obtained. Numerical simulation examples have shown that the errors between the optimizing reduced PLSMFE solutions and the classical PLSMFE solutions are consistent with theoretical results. Moreover, they have also shown the feasibility and efficiency of the POD method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper we present a stress‐based least‐squares finite‐element formulation for the solution of the Navier–Stokes equations governing flows of viscous incompressible fluids. Stress components are introduced as independent variables to make the system first order. Continuity equation becomes an algebraic equation and is eliminated from the system with suitable modifications. The h and p convergence are verified using the exact solution of Kovasznay flow. Steady flow past a large circular cylinder in a channel is solved to test mass conservation. Transient flow over a backward‐facing step problem is solved on several meshes. Results are compared with that obtained using vorticity‐based first‐order formulation for both benchmark problems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents various finite difference schemes and compare their ability to simulate instability waves in a given flow field. The governing equations for two‐dimensional, incompressible flows were solved in vorticity–velocity formulation. Four different space discretization schemes were tested, namely, a second‐order central differences, a fourth‐order central differences, a fourth‐order compact scheme and a sixth‐order compact scheme. A classic fourth‐order Runge–Kutta scheme was used in time. The influence of grid refinement in the streamwise and wall normal directions were evaluated. The results were compared with linear stability theory for the evolution of small‐amplitude Tollmien–Schlichting waves in a plane Poiseuille flow. Both the amplification rate and the wavenumber were considered as verification parameters, showing the degree of dissipation and dispersion introduced by the different numerical schemes. The results confirmed that high‐order schemes are necessary for studying hydrodynamic instability problems by direct numerical simulation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
In this work a finite element method for a dual‐mixed approximation of generalized Stokes problems in two or three space dimensions is studied. A variational formulation of the generalized Stokes problems is accomplished through the introduction of the pseudostress and the trace‐free velocity gradient as unknowns, yielding a twofold saddle point problem. The method avoids the explicit computation of the pressure, which can be recovered through a simple post‐processing technique. Compared with an existing approach for the same problem, the method presented here reduces the global number of degrees of freedom by up to one‐third in two space dimensions. The method presented here also represents a connection between existing dual‐mixed and pseudostress methods for Stokes problems. Existence, uniqueness, and error results for the generalized Stokes problems are given, and numerical experiments that illustrate the theoretical results are presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, sixth‐order monotonicity‐preserving optimized scheme (OMP6) for the numerical solution of conservation laws is developed on the basis of the dispersion and dissipation optimization and monotonicity‐preserving technique. The nonlinear spectral analysis method is developed and is used for the purpose of minimizing the dispersion errors and controlling the dissipation errors. The new scheme (OMP6) is simple in expression and is easy for use in CFD codes. The suitability and accuracy of this new scheme have been tested through a set of one‐dimensional, two‐dimensional, and three‐dimensional tests, including the one‐dimensional Shu–Osher problem, the two‐dimensional double Mach reflection, and the Rayleigh–Taylor instability problem, and the three‐dimensional direct numerical simulation of decaying compressible isotropic turbulence. All numerical tests show that the new scheme has robust shock capturing capability and high resolution for the small‐scale waves due to fewer numerical dispersion and dissipation errors. Moreover, the new scheme has higher computational efficiency than the well‐used WENO schemes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents results on a verification test of a Direct Numerical Simulation code of mixed high‐order of accuracy using the method of manufactured solutions (MMS). This test is based on the formulation of an analytical solution for the Navier–Stokes equations modified by the addition of a source term. The present numerical code was aimed at simulating the temporal evolution of instability waves in a plane Poiseuille flow. The governing equations were solved in a vorticity–velocity formulation for a two‐dimensional incompressible flow. The code employed two different numerical schemes. One used mixed high‐order compact and non‐compact finite‐differences from fourth‐order to sixth‐order of accuracy. The other scheme used spectral methods instead of finite‐difference methods for the streamwise direction, which was periodic. In the present test, particular attention was paid to the boundary conditions of the physical problem of interest. Indeed, the verification procedure using MMS can be more demanding than the often used comparison with Linear Stability Theory. That is particularly because in the latter test no attention is paid to the nonlinear terms. For the present verification test, it was possible to manufacture an analytical solution that reproduced some aspects of an instability wave in a nonlinear stage. Although the results of the verification by MMS for this mixed‐order numerical scheme had to be interpreted with care, the test was very useful as it gave confidence that the code was free of programming errors. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we consider an augmented velocity–pressure–stress formulation of the 2D Stokes problem, in which the stress is defined in terms of the vorticity and the pressure, and then we introduce and analyze stable mixed finite element methods to solve the associated Galerkin scheme. In this way, we further extend similar procedures applied recently to linear elasticity and to other mixed formulations for incompressible fluid flows. Indeed, our approach is based on the introduction of the Galerkin least‐squares‐type terms arising from the corresponding constitutive and equilibrium equations, and from the Dirichlet boundary condition for the velocity, all of them multiplied by stabilization parameters. Then, we show that these parameters can be suitably chosen so that the resulting operator equation induces a strongly coercive bilinear form, whence the associated Galerkin scheme becomes well posed for any choice of finite element subspaces. In particular, we can use continuous piecewise linear velocities, piecewise constant pressures, and rotated Raviart–Thomas elements for the stresses. Next, we derive reliable and efficient residual‐based a posteriori error estimators for the augmented mixed finite element schemes. In addition, several numerical experiments illustrating the performance of the augmented mixed finite element methods, confirming the properties of the a posteriori estimators, and showing the behavior of the associated adaptive algorithms are reported. The present work should be considered as a first step aiming finally to derive augmented mixed finite element methods for vorticity‐based formulations of the 3D Stokes problem. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号