首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A higher‐order Boussinesq‐type model with moving bottom boundary: applications to submarine landslide tsunami waves
Authors:B Ataie‐Ashtiani  A Najafi Jilani
Institution:Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
Abstract:A two‐dimensional depth‐integrated numerical model is developed using a fourth‐order Boussinesq approximation for an arbitrary time‐variable bottom boundary and is applied for submarine‐landslide‐generated waves. The mathematical formulation of model is an extension of (4,4) Padé approximant for moving bottom boundary. The mathematical formulations are derived based on a higher‐order perturbation analysis using the expanded form of velocity components. A sixth‐order multi‐step finite difference method is applied for spatial discretization and a sixth‐order Runge–Kutta method is applied for temporal discretization of the higher‐order depth‐integrated governing equations and boundary conditions. The present model is validated using available three‐dimensional experimental data and a good agreement is obtained. Moreover, the present higher‐order model is compared with fully potential three‐dimensional models as well as Boussinesq‐type multi‐layer models in several cases and the differences are discussed. The high accuracy of the present numerical model in considering the nonlinearity effects and frequency dispersion of waves is proven particularly for waves generated in intermediate and deeper water area. Copyright © 2006 John Wiley & Sons, Ltd.
Keywords:submarine landslide  tsunami waves  impulsive waves  Boussinesq model  numerical model
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号