首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
2.
The blood-brain permeation of a structurally diverse set of 281 compounds was modeled using linear regression and a multivariate genetic partial least squares (G/PLS) approach. Key structural features affecting the logarithm of blood-brain partitioning (logBB) were captured through statistically significant quantitative structure-activity relationship (QSAR) models. These relationships reveal the importance of logP, polar surface area, and a variety of electrotopological indices for accurate predictions of logBB. The best models reveal an excellent correlation (r > 0.9) for a training set of 58 compounds. Likewise, the comparison of the average logBB values obtained from an ensemble of QSAR models with experimental values also verifies the statistical quality of the models (r > 0.9). The models provide good agreement (r approximately 0.7) between the predicted logBB values for 34 molecules in the external validation set and the experimental values. To further validate the models for use during the drug discovery process, a prediction set of 181 drugs with reported CNS penetration data was used. A >70% success rate is obtained by using any of the QSAR models in the qualitative prediction for CNS permeable (active) drugs. A lower success rate (approximately 60%) was obtained for the best model for CNS impermeable (inactive) drugs. Combining the predictions obtained from all the models (consensus) did not significantly improve the discrimination of CNS active and CNS inactive molecules. Finally, using the therapeutic classification as a guiding tool, the CNS penetration capability of over 2000 compounds in the Synthline database was estimated. The results were very similar to the smaller set of 181 compounds.  相似文献   

3.
3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the formation of mevalonate. In many classes of organisms, this is the committed step leading to the synthesis of essential compounds, such as cholesterol. However, a high level of cholesterol is an important risk factor for coronary heart disease, for which an effective clinical treatment is to block HMGR using inhibitors like statins. Recently the structures of catalytic portion of human HMGR complexed with six different statins have been determined by a delicate crystallography study (Istvan and Deisenhofer Science 2001, 292, 1160-1164), which established a solid basis of structure and mechanism for the rational design, optimization, and development of even better HMGR inhibitors. In this study, three-dimensional quantitative structure-activity relationship (3D QSAR) with comparative molecular field analysis (CoMFA) was performed on a training set of up to 35 statins and statin-like compounds. Predictive models were established by using two different ways: (1) Models-fit, obtained by SYBYL conventional fit-atom molecular alignment rule, has cross-validated coefficients (q2) up to 0.652 and regression coefficients (r2) up to 0.977. (2) Models-dock, obtained by FlexE by docking compounds into the HMGR active site, has cross-validated coefficients (q2) up to 0.731 and regression coefficients (r2) up to 0.947. These models were further validated by an external testing set of 12 statins and statin-like compounds. Integrated with CoMFA 3D QSAR predictive models, molecular surface property (electrostatic and steric) mapping and structure-based (both ligand and receptor) virtual screening have been employed to explore potential novel hits for the HMGR inhibitors. A representative set of eight new compounds of non-statin-like structures but with high pIC(50) values were sorted out in the present study.  相似文献   

4.
5.
The use of high throughput screening (HTS) to identify lead compounds has greatly challenged conventional quantitative structure-activity relationship (QSAR) techniques that typically correlate structural variations in similar compounds with continuous changes in biological activity. A new QSAR-like methodology that can correlate less quantitative assay data (i.e., "active" versus "inactive"), as initially generated by HTS, has been introduced. In the present study, we have, for the first time, applied this approach to a drug discovery problem; that is, the study of the estrogen receptor ligands. The binding affinities of 463 estrogen analogues were transformed into a binary data format, and a predictive binary QSAR model was derived using 410 estrogen analogues as a training set. The model was applied to predict the activity of 53 estrogen analogues not included in the training set. An overall accuracy of 94% was obtained.  相似文献   

6.
陈艳  吴琼  堵锡华  王玮 《分子科学学报》2020,(2):138-144,I0004
为了研究马来酰亚胺类化合物抑制活性与分子结构的定量构效关系,在分子理论的基础上计算了67个马来酰亚胺类化合物的电性距离矢量,通过最佳变量子集回归的方法,建立了抑制活性的五元线性回归模型,模型的传统相关系数(R2)和交叉验证相关系数(RCV2)分别为0.864和0.825.该模型经过Jackknife法检验、交叉验证、F检验及外部检验法证明具有良好的稳健性和预测能力.根据进入模型的5个变量分析,影响马来酰亚胺类GSK-3β抑制剂抑制活性的主要结构基团是-NH-,=O(或-OH),≡CH,Cl-及-O-(或-S-).同时基于QSAR模型设计了6个抑制活性显著提高的马来酰亚胺类分子,并预测了它们的抑制活性.  相似文献   

7.
8.
Multiple R-groups (monovalent fragments) are implicitly accessible within most of the molecular structures that populate large structural databases. R-group searching would desirably consider pIC50 contribution forecasts as well as ligand similarities or docking scores. However, R-group searching, with or without pIC50 forecasts, is currently not practical. The most prevalent and reliable source of pIC50 predictions, existing 3D-QSAR approaches, is also difficult and somewhat subjective. Yet in 25 of 25 trials on data sets on which a field-based 3D-QSAR treatment had already succeeded, substitution of objective (canonically generated) topomer poses for the original structure-guided manual alignments produced acceptable 3D-QSAR models, on average having almost equivalent statistical quality to the published models, and with negligible effort. Their overall pIC50 prediction error is 0.805, calculated as the average over these 25 topomer CoMFA models in the standard deviations of pIC50 predictions, derived from the 1109 possible "leave-out-one-R-group" (LOORG) pIC50 contributions. (This novel LOORG protocol provides a more realistic and stringent test of prediction accuracy than the customary "leave-out-one-compound" LOO approach.) The associated average predictive r(2) of 0.495 indicates a pIC50 prediction accuracy roughly halfway between perfect and useless. To assess the ability of topomer-CoMFA based virtual screening to identify "highly active" R-groups, a Receiver Operating Curve (ROC) approach was adopted. Using, as the binary criterion for a "highly active" R-group, a predicted pIC50 greater than the top 25% of the observed pIC50 range, the ROC area averaged across the 25 topomer CoMFA models is 0.729. Conventionally interpreted, the odds that a "highly active" R-group will indeed confer such a high pIC50 are 0.729/(1-0.729) or almost 3 to 1. To confirm that virtual screening within large collections of realized structures would provide a useful quantity and variety of R-group suggestions, combining shape similarity with the "highly active" pIC50, the 50 searches provided by these 25 models were applied to 2.2 million structurally distinct R-group candidates among 2.0 million structures within a ZINC database, identifying an average of 5705 R-groups per search, with the highest predicted pIC50 combination averaging 1.6 log units greater than the highest reported pIC50s.  相似文献   

9.
10.
11.
12.
The cyclin-dependent kinases (CDKs) have been characterized in complex with a variety of inhibitors, but the majority of structures solved are in the inactive form. We have solved the structures of six inhibitors in both the monomeric CDK2 and binary CDK2/cyclinA complexes and demonstrate that significant differences in ligand binding occur depending on the activation state. The binding mode of two ligands in particular varies substantially in active and inactive CDK2. Furthermore, energetic analysis of CDK2/cyclin/inhibitors demonstrates that a good correlation exists between the in vitro potency and the calculated energies of interaction, but no such relationship exists for CDK2/inhibitor structures. These results confirm that monomeric CDK2 ligand complexes do not fully reflect active conformations, revealing significant implications for inhibitor design while also suggesting that the monomeric CDK2 conformation can be selectively inhibited.  相似文献   

13.
14.
The transport activity of a membrane protein, bilitranslocase (T.C. # 2.A.65.1.1), which acts as a transporter of bilirubin from blood to liver cells, was experimentally determined for a large set of various endogenous compounds, drugs, purine and pyrimidine derivatives. On these grounds, the structure-activity models were developed following the OECD principles of QSAR models and their predictive ability for new chemicals was evaluated. The applicability domain of the models was estimated by Euclidean distances criteria according to the applied modeling method. The selection of the most influential structural variables was an important stage in the adopted modeling methodology. The interpretation of selected variables was performed in order to get an insight into the mechanism of transport through the cell membrane via bilitranslocase. Validation of the optimized models was performed by a previously determined validation set. The classification model was build to separate active from inactive compounds. The resulting accuracy, sensitivity, and specificity were 0.73, 0.89, and 0.64, respectively. Only active compounds were used to develop a predictive model for bilitranslocase inhibition constants. The model showed good predictive ability; Root Mean Squared error of the validation set, RMS(V)=0.29 log units.  相似文献   

15.
A training set of 27 norstatine derived inhibitors of HIV-1 protease, based on the 3(S)-amino-2(S)-hydroxyl-4-phenylbutanoic acid core (AHPBA), for which the -log IC(50) values were measured, was used to construct 4D-QSAR models. Five unique RI-4D-QSAR models, from two different alignments, were identified (q(2) = 0.86-0.95). These five models were used to map the atom type morphology of the lining of the inhibitor binding site at the HIV protease receptor site as well as predict the inhibition potencies of seven test set compounds for model validation. The five models, overall, predict the -log IC(50) activity values for the test set compounds in a manner consistent with their q(2) values. The models also correctly identify the hydrophobic nature of the HIV protease receptor site, and inferences are made as to further structural modifications to improve the potency of the AHPBA inhibitors of HIV protease. The finding of five unique, and nearly statistically equivalent, RI-4D-QSAR models for the training set demonstrates that there can be more than one way to fit structure-activity data even within a given QSAR methodology. This set of unique, equally good individual models is referred to as the manifold model.  相似文献   

16.
17.
18.
Using a data set comprised of literature compounds and structure-activity data for cyclin dependent kinase 2, several pharmacophore hypotheses were generated using Catalyst and evaluated using several criteria. The two best were used in retrospective searches of 10 three-dimensional databases containing over 1,000,000 proprietary compounds. The results were then analyzed for the efficiency with which the hypotheses performed in the areas of compound prioritization, library prioritization, and library design. First as a test of their compound prioritization capabilities, the pharmacophore models were used to search combinatorial libraries that were known to contain CDK active compounds to see if the pharmacophore models could selectively choose the active compounds over the inactive compounds. Second as a test of their utility in library design again the pharmacophore models were used to search the active combinatorial libraries to see if the key synthons were over represented in the hits from the pharmacophore searches. Finally as a test of their ability to prioritize combinatorial libraries, several inactive libraries were searched in addition to the active libraries in order to see if the active libraries produced significantly more hits than the inactive libraries. For this study the pharmacophore models showed potential in all three areas. For compound prioritization, one of the models selected active compounds at a rate nearly 11 times that of random compound selection though in other cases models missed the active compounds entirely. For library design, most of the key fragments were over represented in the hits from at least one of the searches though again some key fragments were missed. Finally, for library prioritization, the two active libraries both produced a significant number of hits with both pharmacophore models, whereas none of the eight inactive libraries produced a significant number of hits for both models.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号