首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relation between membrane characteristics and performance in nanofiltration   总被引:2,自引:0,他引:2  
The performance of commercial membranes during nanofiltration of aqueous solutions containing dissolved uncharged or charged organic components, was studied on the basis of membrane characteristics by means of multiple linear regression.

The membrane characteristics studied were surface hydrophobicity, surface roughness, surface charge, molecular weight cut-off (MWCO), permeability and porosity of the top layer (expressed as the volume fraction of small and large pores, determined by Positron Annihilation Lifetime Spectroscopy). Filtration and adsorption experiments were performed in the presence of various components, which differ in molecular mass, hydrophobicity and (in the case of charged organic components) in charge.

It was concluded that in order to minimize fouling, the membrane should have a low volume fraction of small pores in the top layer. When the organic components are charged, a membrane with a large surface charge and a high hydrophilicity is also favourable. Not only the membrane, but also the feed characteristics have an influence on fouling: the best results during nanofiltration of dissolved uncharged or charged components were obtained with hydrophilic or negatively charged components, respectively. Dissolved organic components were the best retained by membranes with a low MWCO. In addition, uncharged organic components should be hydrophilic and small to obtain a high retention and minimal flux decline, while the interplay between membrane and component charge is crucial during filtration of dissolved charged organic components.  相似文献   


2.
Ultrafiltration membranes with similar pore sizes were prepared from acrylonitrile homopolymer and copolymers with increasing acrylamide content. The membranes containing acrylamide were more hydrophilic, had a smaller dispersion force component of the surface energy, and a smaller negative zeta potential than those prepared from the homopolymer. The effect of the differing surface chemistry of these membranes with similar pore sizes was examined by studying the ultrafiltration of bovine serum albumin (BSA) as a function of feed pH. The hydrophilic membranes showed higher permeate fluxes and flux recoveries than the hydrophobic membrane, in spite of their reduced repulsive electrostatic interaction. With increasing pH, protein transmission increased markedly for the acrylamide containing membranes whereas the transmission through the hydrophobic membrane remained low. These rejection data are explained by the combined effects of the increased hydrophilicity, decreased dispersive surface energy and reduced electrostatic repulsion of the acrylamide containing membranes.  相似文献   

3.
Monodisperse colloidal silica particles were prepared by the St?ber method and hydrophobized by grafting a silane coupling agent, octadecyltrimethoxysilane. Two different types of silica particles, i.e., hydrophilic and hydrophobic silica particles were spread at the air/water interface to form the Langmuir monolayers. Monolayer properties of those particles were investigated by measuring surface pressure–area (π–A) isotherms at different subphase pH. At pH above the isoelectric point (IEP) of silica, as pH increased the π–A isotherms for the hydrophobic particles slightly shifted to larger surface area whereas those for the hydrophilic particles showed a reverse trend. At pH below the IEP, the π–A isotherms for both types of particles shifted to much larger surface area with different shapes. In order to analyze the π–A isotherm results further, the time dependence of π was examined. When pH is above the IEP, the π for the hydrophilic particles significantly decreased with increasing time and it did more at higher pH. On the other hand, the decrease in π for the hydrophobic particles was insignificant regardless of pH. For both types of silica particles, the decrease in π was minimal at pH below the IEP. These results were discussed in terms of particle desorption into the water subphase and interparticle electrostatic repulsion which is directly influenced by zeta potential.  相似文献   

4.
Asymmetric ultrafiltration membranes were fabricated from the blends of phenolphthalein polyethersulfone (PES-C) and acrylonitrile copolymers containing charged groups, poly(acrylonitrile-co-acrylamido methylpropane sulfonic acid) (PAN-co-AMPS). From the surface analysis by XPS and ATR-FTIR, it was found that the charged groups tend to accumulate onto the membrane surface. This result indicated that membrane surface modification for imparting surface electrical properties could be carried out by blending charged polymer. Furthermore, with the help of a relatively novel method to measure membrane conduction, the true zeta potentials calculated on the basis of the streaming potential measurements were used to reflect the charge state of membrane surface. In addition, it was noteworthy that, from the profiles of zeta potential versus pH curves and the magnitude of zeta potentials, the determination of zeta potential was dependent not only on the electrical properties of membrane surface but also on its hydrophilicity. At last, based on a relatively elaborate study on the electrostatic interaction between the membrane surface and protein, it was found that these charged membranes could meet different demands of membrane applications, such as resisting protein fouling or protein separation, through adjusting solution pH value.  相似文献   

5.
Surface charge properties have a significant influence on membrane retention and fouling performance. As a key parameter describing the surface charge of membranes used in aqueous applications, zeta potential measurements on membranes of various types have attracted great attention. During the zeta potential characterization of a series of ion-conductive sulfonated poly(sulfone) membranes, it was found that the measured streaming current varied with the thickness of the sample, which is not predicted by the classical Smoluchowski equation. Moreover, for higher conductivity membranes with an increased concentration of sulfonate groups, the zeta potential tended toward zero. It was determined that the influence of membrane bulk conductance on the measured streaming current must be taken into account in order to correctly interpret the streaming current data for ion-conductive polymers and understand the relationship between membrane chemical composition and zeta potential. Extrapolating the measured streaming current to a membrane thickness of zero has proven to be a feasible method of eliminating the error associated with measuring the zeta potential on ion conductive polymer membranes. A linear resistance model is proposed to account for the observed streaming currents where the electrolyte channel is in parallel with the ion-conductive membranes.  相似文献   

6.
In this study, hydrophilic and fouling-resistant polysulfone (PS) membranes were fabricated using the phase inversion method to reduce membrane fouling caused by microalgal culture. The Pluronic F-127 polymer, which is used as a hydrophilic co-polymer, was added to the membranes to improve the membrane properties. Characteristic specifications of the fabricated membranes, such as morphology, surface roughness, chemical structures and hydrophobicity/hydrophilicity, were studied using scanning electron microscopy, atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), attenuated total reflection-fourier infrared (ATR-FTIR) spectroscopy and contact angle devices. According to the results obtained, it was observed that, with the increase of the Pluronic F-127 concentration in the membranes, the surface roughness of the membranes decreased and hydrophilicity and permeation fluxes increased notably. Furthermore, it was observed that the addition of the Pluronic F-127 polymer into the membranes reduced reversible/irreversible membrane fouling. Additionally, a characterisation of the fouled membranes was performed for the purpose of comprehensively understanding the membrane fouling mechanism caused by microalgal culture.  相似文献   

7.
The DSPM (Donnan steric partitioning pore model) was evaluated in the case of a titania membrane with "nanofiltration properties" by measuring the electrokinetic charge, pore size, and water permeability of the membrane, along with charged and uncharged solute retention. The zeta potential values (zeta) were determined from measurements of the electrophoretic mobility (EM) of titania powder forming the filtering layer of the membrane. Zeta potential values were converted into membrane volume charge (X) by assuming two limiting cases: a constant surface charge (sigma(s)(cst)) and a constant surface potential (psi(s)(cst)). The mean pore radius and thickness/porosity ratio of the membrane were determined by permporometry and from water permeability measurements, respectively. Retention measurements were carried out as a function of the permeate volume flux for both neutral solutes (polyethylene glycol PEG of different size) and salts (KCl, MgSO4, K2SO4, and MgCl2) at various pH values. Ionic retentions showed minimum values near the IEP of the membrane. Retention data were analyzed using the DSPM. Very good agreement was found between the pore radius calculated by the model and that determined by permporometry. X values calculated from fitting retention data using the DSPM were also in satisfactorily agreement with X values calculated from EM measurements assuming a constant surface potential for a large pH range. Furthermore, the DSPM leads to X values (X(DSPM)) between those calculated from EM (X(EM)) using the two limiting bounds. In other words, X(DSPM) was higher than X(EM) assuming psi(s)(cst) at pH values far from the isoelectric point (IEP) and lower than X(EM) assuming sigma(s)(cst). These results show that the DSPM is in qualitative agreement with the charge regulation theory (increase of the pore surface potential and decrease of the pore surface charge density with decreasing the pore size). On the other hand, the thickness/porosity ratio of the membrane calculated from solute retention data differed significantly from that determined from water permeability measurements. Moreover, a single value of Deltax/Ak could not be determined from PEG and salt retention data. This means that the Deltax/Ak parameter loses its physical meaning and includes physical phenomena which are not taken into account by the DSPM. Nevertheless, the model satisfactorily predicted the limiting retention, as this is not influenced by the Deltax/Ak parameter.  相似文献   

8.
The zeta potential is an important and reliable indicator of the surface charge of membranes, and knowledge of it is essential for the design and operation of membrane processes. The zeta potential cannot be measured directly, but must be deduced from experiments by means of a model. The possibility of determining the zeta potential of porous membranes from measurements of the electrolyte conductivity inside pores (lambda(pore)) is investigated in the case of a ceramic microfiltration membrane. To this end, experimental measurements of the electrical resistance in pores are performed with the membrane filled with KCl solutions of various pHs and concentrations. lambda(pore) is deduced from these experiments. The farther the pH is from the isoelectric point and/or the lower the salt concentration is, the higher the ratio of the electrolyte conductivity inside pores to the bulk conductivity is, due to a more important contribution of the surface conduction. Zeta potentials are calculated from lambda(pore) values by means of a space charge model and compared to those calculated from streaming potential measurements. It is found that the isoelectric points are very close and that zeta potential values for both methods are in quite good agreement. The differences observed in zeta potentials could be due to the fact that the space charge model does not consider the surface conductivity in the inner part of the double layer. Measurements of the electrolyte conductivity within the membrane pores are proved to be a well-adapted procedure for the determination of the zeta potential in situations where the contribution of the surface conduction is significant, i.e., for small and charged pores. Copyright 2001 Academic Press.  相似文献   

9.
The manipulation of the adsorption of the anionic surfactant, sodium dodecyl sulfate, SDS, onto hydrophilic silica by the polyelectrolytes, polyethyleneimine, PEI, ethoxylated PEI, and the polyamine, pentaethylenehexamine, has been studied using neutron reflectometry. The adsorption of a thin PEI layer onto hydrophilic silica promotes a strong reversible adsorption of the SDS through surface charge reversal induced by the PEI at pH 7. At pH 2.4, a much thicker adsorbed PEI layer is partially swelled by the SDS, and the SDS adsorption is now no longer completely reversible. At pH 10, there is some penetration of SDS and solvent into a thin PEI layer, and the SDS adsorption is again not fully reversible. Ethoxylation of the PEI (PEI-EO(1) and PEI-EO(7)) results in a much weaker and fragile PEI and SDS adsorption at both pH 3 and pH 10, and both polymer and surfactant desorb at higher surfactant concentrations (>critical micellar concentration, cmc). For the polyamine, pentaethylenehexamine, adsorption of a layer of intermediate thickness is observed at pH 10, but at pH 3, no polyamine adsorption is evident; and at both pH 3 and pH 10, no SDS adsorption is observed. The results presented here show that, for the amine-based polyelectrolytes, polymer architecture, molecular weight, and pH can be used to manipulate the surface affinity for anionic surfactant (SDS) adsorption onto polyelectrolyte-coated hydrophilic silica surfaces.  相似文献   

10.
A serious problem faced during the application of membrane filtration in water treatment is membrane fouling by natural organic matter (NOM). The hydrophilicity, zeta potential and morphology of membrane surface mainly influence membrane fouling. The aim of the present study is to reveal the correlation between membrane surface morphology and membrane fouling by use of humic acid solution and to investigate the efficiency of backwashing by water, which is applied to restore membrane flux. Cellulose acetate butyrate (CAB) hollow fiber membranes were used in the present study. To obtain the membranes with various surface structures, membranes were prepared via both thermally induced phase separation (TIPS) and nonsolvent-induced phase separation (NIPS) by changing the preparation conditions such as polymer concentration, air gap distance and coagulation bath composition. Since the membrane material is the same, the effects of hydrophilicity and zeta potential on membrane fouling can be ignored. More significant flux decline was observed in the membrane with lower humic acid rejection. For the membranes with similar water permeability, the lower the porosity at the outer surface, the more serious the membrane fouling. Furthermore, the effect of the membrane morphology on backwashing performance was discussed.  相似文献   

11.
The streaming potentials of two different nanofiltration membranes were studied with several electrolyte solutions to investigate the influence of salt type and concentration on the zeta potential and kinetic surface charge density of the membranes. The zeta potentials decreased with increasing salt concentration, whereas the kinetic surface charge densities increased. The kinetic surface charge densities could be described by Freundlich isotherms, except in one case, indicating that the membranes had a negligible surface charge. The kinetic surface charge density observed was caused by adsorbed anions. Salt retention measurements showed different mechanisms for salt separation for the two investigated membranes. One membrane showed a salt retention that could be explained by a Donnan exclusion type of separation mechanism, whereas for the other membrane the salt rejection seemed to be a combination of size and Donnan excluion. Comparing the results obtained by the streaming potential measurements with those of the retention measurements, it could be concluded that the membrane with the highest kinetic surface charge density showed the Donnan exclusion type of separation, whereas the membrane with the lower surface charge density showed a separation mechanism that was not totally determined by Donnan exclusion, size effects seemed to play a role as well.  相似文献   

12.
The surface and the solid/liquid interface of two polyamide membranes, one experimental (B0) and one commercial (NF45), have been characterized by X-ray photoelectronic spectroscopy (XPS), atomic force microscopy (AFM), and zeta potential, respectively. The surface roughness, determined by AFM data analysis, is different for the two membranes, and results show that the commercial NF45 membrane presents a much lower roughness than the experimental B0 membrane. XPS data indicate that the surface of membrane NF45 is similar to that of pure polyamide, while membrane B0 contains a considerable amount of impurities. The homogeneity in depth of both membranes was also studied by determining the composition profile at different analysis angles. Streaming potential along the membrane surface or tangential streaming potential (TSP) measurements with NaCl solutions at different concentrations were carried out with both membranes to determine the zeta potential and the electrokinetic surface charge density, and a correlation between membrane surface and interface parameters is made. Some differences in atomic concentrations of membrane surface elements and X-ray photoelectronic spectra of the samples used in TSP measurements and after a drying process at 90 degrees C for 24 h can be observed when they are compared with those for fresh membranes. Electrokinetic parameters for membrane NF45 (TSP, zeta potential, and surface electrokinetic charge density) obtained from three different series of measurements strongly decrease as a result of membrane use, but for membrane B0 they are practically independent of the number of measurements. This difference in the electrokinetic behavior of the two membranes has been related to the hydration process of the surface for each sample studied by XPS and AFM.  相似文献   

13.
The present work is concerned with the preparation and some properties of novel environment-sensitive membranes. A porous poly (vinylidene fluoride) membrane (pore size 0.22 μm) was pretreated by air plasma; subsequently, hydrophilic monomers were graft polymerized on the treated surface. Since the filtration characteristics of the obtained membranes reflect the configuration of the grafted chains, these can be changed reversibly from ultrafilter to microfilter and vice versa in response to the membrane environment such as pH, solvent composition and ionic species. Grafted chains act as a sensor and a valve to regulate filtration characteristics. The poly(acrylic acid) grafted membrane for example is very sensitive to environmental pH. In the pH region of 1 to 5, the filtration rate sharply decreased with increasing solution pH, the filtration rate at pH 1.4 being about ten times higher than at pH 5.2. Together with this decrease in filtration rate, the membrane gained the ability of ultrafiltration of macromolecular solutes such as dextran (Mw = 2,000,000) and albumin (Mw = 67,000). In the pH region of 5.2 to 7.5, filtration rate and solute rejection did not depend on pH. The pH sensitivity is reversible and reproducible. Because of characteristics such as the drastic alteration in filtration rate and solute separation properties and the quick response to solution conditions, the environment-sensitive membranes developed here may find applications in various areas of membrane technology.  相似文献   

14.
When a benzene/cyclohexane mixture of 10 wt % benzene was permeated through side-chain liquid-crystalline polymer (LCP) membranes by pervaporation at various temperatures, the permeation rate increased with increasing permeation temperature. The LCP membranes also exhibited a benzene permselectivity. The permselectivity for the benzene/cyclohexane mixture through the LCP membrane was different in the glassy, liquid-crystalline, and isotropic states. The LCP membrane had different apparent activation energies for permeation at each state. LCP membrane in the liquid-crystalline state had the highest apparent activation energy of the three states. Results suggest that the benzene permselectivity was influenced by changes in the LCP membrane structure, i.e., a state-transformation. It was found that a balance of the orientation of mesogenic groups and the flexibility of the siloxane chains was very important for benzene permselectivity. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 281–288, 1998  相似文献   

15.
通过表面引发原子转移自由基聚合在固定了引发剂的硅表面接枝了聚甲基丙烯酸叔丁酯(PtBMA),而后通过水解得到聚甲基丙烯酸(PMAA)聚合物刷.通过X射线光电子能谱、椭圆偏振仪和水接触角测试证明了接枝改性的成功.研究发现PMAA改性表面的浸润性和对蛋白质的吸附行为都具有一定的pH响应性.在较低pH值时改性表面相对疏水,随...  相似文献   

16.
This report focuses on measuring the individual electrophoretic mobilities of liposomes with different pH gradients across their membrane using capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). The results from the individual analysis of liposomes show that, using surface electrostatic theories and the electrokinetic theory as the first approximation, zeta potential contributes more significantly to the electrophoretic mobility of liposomes than liposomal size. For liposomes with an outer pH 7.4 (pH(o) 7.4) and a net negative outer surface charge, the most negative electrophoretic mobilities occur when the inner pH (pH(i)) is 6.8; at higher or lower pH(i), the electrophoretic mobilities are less negative. The theories mentioned above cannot explain these pH-induced electrophoretic mobility shifts. The capacity theory, predicting an induced electrical charge on the surface of liposomes, can only explain the results at pH(i) > 6.8. In this report, we hypothesize that there is a flip-flop process of phospholipids, which refers to the exchange of phospholipids between the outer and inner layers of the membrane. This flip-flop is caused by the pH gradient and membrane instability and results in the observed electrophoretic mobility changes when pH(i) is <6.8. Furthermore, it is found that the mobilities of acidic organelles are consistent with the predictions of liposome models we used here.  相似文献   

17.
This paper focuses on the relationship between diffusive transport and membrane composition (crosslinker content and relaxed polymer volume fraction) in membranes whose permeability can be actively controlled by chemical or electrical stimuli. First, pH induced changes in permeability to uncharged fluorescent solutes were measured. Then, by correlating bath pH with membrane hydration, the transport properties of membranes of different crosslinker content and/or relaxed polymer volume fraction were compared at constant hydration. The membrane permeability was found to decrease as the amount of crosslinker added to the membrane formulation at the time of polymerization increased, while the permeability increased as the solvent content during polymerization increased. A free volume theory which was fit to the data shows good agreement, and predicts a monotonically decreasing porosity factor with increased crosslinker content.  相似文献   

18.
PAN membrane and hydrolyzed PAN membranes with the same pore size were used to investigate the relationship between the electrokinetic property and permeation performance by streaming potential measurement and ion exchange technology. SEM and FT-IR/ATR spectra were employed to analyze the reaction and the presence of the amide groups. The thickness of the polyacrylic acid (PAA) layer on the membrane surface measured by ion-exchange titration technology increased with the reaction time, and that on membrane hydrolyzed for 50 min could reach 10.8 nm. Streaming potential measurement was used to study the influence of the carboxylic and nitrile group on the membrane surface on their separation property. Zeta potential measured in pure water had close relationship with the permeation property. This measurement also proved that there was a maximum zeta potential between zero and the concentration tested. For the ionization or dissociation of the carboxylic group on the membrane surface, treated membranes had a more flexible zeta potential range than that of the untreated membrane in the pH range of 3–9. They were all negative in pure water and 1 g·L−1 KCl solution, while the membranes hydrolyzed for 30 min and 50min had IEPs at pH 5.5 and 6.1 in 1 g·L−1 MgCl2 solution. Special inflection points of all the membranes were observed in AlCl3 solution for the positive colloid structure of Al(OH)3.  相似文献   

19.
Surfaces carrying hydrophilic polymer brushes were prepared from poly(styrene)-poly(acrylic acid) and poly(styrene)-poly(ethylene oxide) diblock copolymers, respectively, using a Langmuir-Blodgett technique and employing poly(styrene)-coated planar glass as substrates. The electrical properties of these surfaces in aqueous electrolyte were analyzed as a function of pH and KCl concentration using streaming potential/streaming current measurements. From these data, both the zeta potential and the surface conductivity could be obtained. The poly(acrylic acid) brushes are charged due to the dissociation of carboxylic acid groups and give theoretical surface potentials of -160 mV at full dissociation in 10(-)(3) M solutions. The surface conductivity of these brushes is enormous under these conditions, accounting for more than 93% of the total measured surface conductivity. However, the mobility of the ions within the brush was estimated from the density of the carboxylic acid groups and the surface conductivity data to be only about 14% of that of free ions. The poly(ethylene oxide) (PEO) brushes effectively screen the charge of the underlying substrate, giving a very low zeta potential except when the ionic strength is very low. From the data, a hydrodynamic layer thickness of the PEO brushes could be estimated which is in good agreement with independent experiments (neutron reflectivity) and theoretical estimates. The surface conductivity in this system was slightly lower than that of the polystyren substrate. This also indicates that no significant amount of preferentially, i.e., nonelectrostatically attracted, ions taken up in the brush.  相似文献   

20.
Gold particles were nucleated on functionalized (i.e., sulfonate or imidazole groups) latex particle surfaces. Gold ions were associated with the functional groups present on the surface of the latex particles by metal‐ligand formation and were then reduced to nucleate gold particles on the particle surface. The use of imidazole groups favored the metal‐ligand formation more effectively compared with sulfonic acid groups, so gold nucleation was investigated on the surface of imidazole‐functionalized model latex particles. The desorption of gold atoms or their surface migration first occurred during the reduction process and then gold nanoparticles were nucleated. The utilization of strong reductants, such as NaBH4 and dimethylamine borane (DMAB) under mildly acidic conditions (i.e., pH 4) led to the deprotonation of imidazole‐rich polymer chains present on the surface of the model latex particles followed by deswelling of hydrophilic polymer surface layers. As a result, well‐dispersed gold nanoparticles were embedded in the hydrophilic polymer surface. On the other hand, the use of weak reductants led to the formation of localized gold aggregates on the surface of the latex particles. The removal of residual styrene monomer is very important because gold ions can be coordinated with the vinyl groups present in styrene monomer and would then be reduced by nucleophilic water addition. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 912–925, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号